BioFunctional IntraNeural Electrodes
BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.
Projectdetails
Introduction
In BioFINE, we will develop flexible intraneural multielectrode arrays, capable of interfacing peripheral nerves, e.g., to transfer input/output signals from bionic limbs. Specifically, we address the challenge of long-term tissue integration and chronic stability by focusing on three aspects of biocompatibility.
Technological Advancements
-
Novel Fabrication Methods
We develop novel fabrication methods allowing the intraneural interface to be defined at even finer resolution than before. -
Functionalizations
We explore functionalizations that will control the tissue response by combined surface-anchored and surface-eluted agents. -
Structural Biocompatibility
We address structural biocompatibility on a system level by engineering novel implantable interconnects that reduce tethering forces and improve prospects for high channel count interfaces.
Bioactivity and Healing
Fine-tuned bioactivity will safeguard surrounding neural tissue in the initial stages of healing. Implants of sub-cellular dimensions and tissue-compatible biomechanics will help maintain tissue health in the longer term.
Conclusion
The combined approach will offer optimal conditions to bridge the gap from electrode to neuron and generate a long-term functional peripheral nerve interface. Indeed, each of the three technological advancements would, on their own, have a substantial impact on neurotechnology, reaching far beyond intraneural interfaces.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.945.622 |
Totale projectbegroting | € 1.945.622 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CHALMERS TEKNISKA HOGSKOLA ABpenvoerder
- ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
- UNIVERSITA DEGLI STUDI DI FERRARA
- UNIVERSITAT AUTONOMA DE BARCELONA
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC STG | € 1.499.213 | 2023 | Details |
Injectable nanoelectrodes for wireless and minimally invasive neural stimulationDeveloping minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments. | ERC STG | € 1.499.725 | 2023 | Details |
Multifunctional nano-bio INterfaces wIth deep braiN reGionsMINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution. | ERC COG | € 2.992.875 | 2025 | Details |
5D Electro-Mechanical Bio-Interface for Neuronal Tissue EngineeringDevelop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications. | ERC STG | € 1.750.000 | 2024 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Injectable nanoelectrodes for wireless and minimally invasive neural stimulation
Developing minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments.
Multifunctional nano-bio INterfaces wIth deep braiN reGions
MINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution.
5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering
Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.