Biointegrable soft actuators alimented by metabolic energy
INTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency.
Projectdetails
Introduction
State-of-the-art implantable actuating devices, such as automated prosthetics, have time-limited operational capacities because they are sustained by batteries which, ultimately, rely on external power sources to be recharged.
Proposed Solution
INTEGRATE proposes a radically new way to solve this problem: use metabolic energy from the patient to power implanted devices. To achieve this ambitious goal, INTEGRATE will develop:
- New 3D printable soft actuating materials inspired by human muscles with high performances and low power consumption.
- An artificial organ capable of harvesting metabolic (biochemical) energy and transforming it into electricity.
Actuating Materials
The actuating materials, referred to as Bionic Muscles, will be prepared via self-assembly of biocompatible colloidal liquid crystals and stimuli-responsive polymers.
Design Features
- A modular design will provide the possibility to manufacture these materials based on the patient's anatomy and needs.
- 3D printability will enhance customization and adaptability.
Energy-Harvesting Organ
The Energy-Harvesting Organ will be capable of converting pH differences within various body fluids (e.g., gastric juice and saliva) into electricity with high efficiency. This will provide the necessary power to sustain the Bionic Muscles.
Impact
This research will revolutionize the field of implantable devices and will represent a turning point in:
- Robotics
- Wearable technologies
- Materials science
- Energy conversion
- Materials engineering
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.698.750 |
Totale projectbegroting | € 1.698.750 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2026 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- VELTHA IVZWpenvoerder
- TECHNISCHE UNIVERSITEIT EINDHOVEN
- UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
- UNIVERSITE DE FRIBOURG
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnologyDeveloping PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems. | ERC POC | € 150.000 | 2022 | Details |
In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronicsThe INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility. | ERC COG | € 1.999.980 | 2024 | Details |
Triboelectric energy generators for self-powered medical implantsTriboMed aims to develop a self-powered, integrated energy harvesting device using triboelectric generators for active implantable medical devices, enhancing patient outcomes and reducing surgical interventions. | ERC COG | € 1.998.273 | 2024 | Details |
Electrochemically Programmable Biochemical Networks for Animate MaterialseBioNetAniMat aims to develop electrochemically programmable artificial animate materials that autonomously adapt and move, enhancing applications in MedTech and soft robotics. | ERC STG | € 1.776.727 | 2024 | Details |
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnology
Developing PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems.
In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronics
The INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility.
Triboelectric energy generators for self-powered medical implants
TriboMed aims to develop a self-powered, integrated energy harvesting device using triboelectric generators for active implantable medical devices, enhancing patient outcomes and reducing surgical interventions.
Electrochemically Programmable Biochemical Networks for Animate Materials
eBioNetAniMat aims to develop electrochemically programmable artificial animate materials that autonomously adapt and move, enhancing applications in MedTech and soft robotics.