MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

Subsidie
€ 2.987.655
2024

Projectdetails

Introduction

The pathological alterations of neurological function (e.g., stroke, trauma, neurodegeneration, epilepsy, neuropsychiatric diseases, chronic pain) are commonly associated with alterations in brain rhythms and activity patterns. There is an urgent clinical need for treatments that can precisely control and restore neural activity, taking advantage of state-of-the-art technological developments in a variety of fields including nanotechnology, nano- and microelectronics, novel materials, brain science, clinical neurology, and computational modelling.

Project Overview

META-BRAIN (MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation) brings together seven expert partners in these fields with the aim of achieving precise spatiotemporal control of brain activity using magnetoelectric nanoarchitectures that can be polarized by non-invasive, remote magnetic fields.

Key Features

  • This novel principle of brain activity control will minimize the amplitude of the required magnetic fields.
  • It will be wireless and have enhanced spatial resolution from single neurons to cortical areas.

Development Approach

We will develop a model-driven fabrication of the coils and monitor the effects on brain function with arrays of graphene microtransistors that uniquely allow full-band recording, integrating all elements in a closed loop.

Alternative Technologies

As an alternative to remote brain stimulation, we will also use novel ultrasonic technologies.

Research Methodology

The META-BRAIN control paradigm will be systematically studied in pre-clinical systems from individual neurons to the full brain. All developments and experiments will be carried out in conjunction with theoretical models that will simulate, quantify, and predict optimal arrangements and patterns for the desired output.

Translation and Dissemination

Translation to humans will be evaluated with our clinical partners, and a detailed dissemination and exploitation plan will be developed by two expert company partners, one of which has extensive expertise in the fabrication of brain interface devices with a worldwide distribution capability.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.987.655
Totale projectbegroting€ 2.987.655

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2026
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FUNDACIO DE RECERCA CLINIC BARCELONA-INSTITUT D INVESTIGACIONS BIOMEDIQUES AUGUST PI I SUNYERpenvoerder
  • G.TEC MEDICAL ENGINEERING GMBH
  • CONSORCIO CENTRO DE INVESTIGACION BIOMEDICA EN RED M.P.
  • CONSIGLIO NAZIONALE DELLE RICERCHE
  • ZABALA INNOVATION CONSULTING SA
  • HOSPITAL CLINIC DE BARCELONA
  • EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH

Land(en)

SpainAustriaItalySwitzerland

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"

The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.

€ 2.996.550
EIC Pathfinder

Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.

The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.

€ 2.744.300
EIC Pathfinder

Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures

Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.

€ 2.552.277
EIC Pathfinder

Emerging technologies for crystal-based gamma-ray light sources

TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.

€ 2.643.187

Vergelijkbare projecten uit andere regelingen

ERC STG

Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory Disorders

This project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit.

€ 1.499.625
ERC POC

Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation

Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.

€ 150.000
ERC COG

Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health

This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.

€ 1.999.875
ERC STG

Bidirectional remote deep brain control with magnetic anisotropic nanomaterials

BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.

€ 1.500.000