High-Quality Graphene Supports for Microspectroscopic Techniques.
Developing high-quality graphene grids (HYPERGRAPH) to enhance transmission electron microscopy (TEM) performance, addressing current support limitations for improved material characterization.
Projectdetails
Introduction
Transmission electron microscopy (TEM) is a powerful technique to fully characterise the local structure of a broad range of materials. Due to many recent hardware advances, the quality of TEM measurements is nowadays ultimately determined by the sample supports. Surprisingly though, their importance has been majorly overlooked so far.
Importance of Graphene Layers
The many benefits of graphene layers as a support have been well-recognised by the community, but commercial “graphene grids” show poor coverage and are dominated by unwanted residues and Cu nanoparticles from the preparation process. Consequently, commercial graphene grids currently correspond to merely 1% of the grids used.
Proposed Solution
A solution to this problem is a novel protocol to produce high-quality graphene grids, developed within my ongoing ERC Consolidator grant “REALNANO”. A head-to-head comparison with the state-of-the-art demonstrates the superior quality of the HYPERGRAPH grids.
Market Demand
Moreover, our ongoing market survey with leading groups in both materials and life sciences indicates a very strong need for graphene grids that yield high and constant quality. Therefore, the overall aim of this PoC is to deliver our HYPERGRAPH supports to the TEM community, our beachhead market.
Methodology
To reach this goal, our methodology is based on:
- Further product development (reproducibility, cost-efficiency, and shelf-life)
- Exploration of other possible applications
- Business planning
In this manner, we aim to increase the Technology Readiness Level for HYPERGRAPH from 4 to 7 and the Commercial Readiness Level from 4 to 6.
Conclusion
Feeling the “pain” related to the poor quality of TEM supports as an end user every day, I am convinced that valorisation of our technology can fill a crucial void in the TEM value chain. In this manner, HYPERGRAPH will enable characterisation and further development of new generations of nano- and biomaterials, with applications in fields as broad as catalysis, medicine, protein research, viral infections, and energy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-8-2023 |
Einddatum | 31-1-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT ANTWERPENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Real-time, High-throughput, Coherent X-ray Microscopy: from Large-Scale Installations to Tabletop DeviceHYPER aims to develop a cost-effective tabletop coherent XUV microscope for advanced nanoscale imaging, enhancing accessibility and understanding in optoelectronics and biomedical applications. | ERC Proof of... | € 150.000 | 2024 | Details |
Developing a scalable production route for functional high performance in-situ TEM cellsThis project aims to enhance in-situ gas cell TEM by scaling up a novel design to improve imaging and analysis of nanomaterials, benefiting sustainable energy, healthcare, and communication technologies. | ERC Proof of... | € 150.000 | 2025 | Details |
Super-resolution microscopy for semiconductor metrologyThe MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling. | ERC Proof of... | € 150.000 | 2024 | Details |
Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolutionThe project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution. | ERC Consolid... | € 2.082.500 | 2024 | Details |
Making time-resolved cryo-EM available for the community of structural biologists: validate, improve, deriskThis project aims to develop and commercialize a novel time-resolved cryo-EM sample preparation method to enhance protein structure analysis and accessibility for users. | ERC Proof of... | € 150.000 | 2024 | Details |
Real-time, High-throughput, Coherent X-ray Microscopy: from Large-Scale Installations to Tabletop Device
HYPER aims to develop a cost-effective tabletop coherent XUV microscope for advanced nanoscale imaging, enhancing accessibility and understanding in optoelectronics and biomedical applications.
Developing a scalable production route for functional high performance in-situ TEM cells
This project aims to enhance in-situ gas cell TEM by scaling up a novel design to improve imaging and analysis of nanomaterials, benefiting sustainable energy, healthcare, and communication technologies.
Super-resolution microscopy for semiconductor metrology
The MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling.
Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolution
The project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution.
Making time-resolved cryo-EM available for the community of structural biologists: validate, improve, derisk
This project aims to develop and commercialize a novel time-resolved cryo-EM sample preparation method to enhance protein structure analysis and accessibility for users.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Grafeen vensters: Schaalbare productie en integratie van grafeenvenstersHet project ontwikkelt prototype grafeen vensters voor Tunneling Electron Microscopie om real-time nanometerresolutie in vloeistoffen te bereiken, cruciaal voor Life Science en energieonderzoek. | Mkb-innovati... | € 173.775 | 2020 | Details |
CryoGridDENSsolutions en CryoSol-World ontwikkelen een innovatieve sample carrier voor Cryo-EM om de 3D-structuur van eiwitten beter te visualiseren en de toepassing in de farmaceutische industrie te versnellen. | Mkb-innovati... | € 332.080 | 2023 | Details |
Automated Transfer of GrapheneDit project richt zich op het verbeteren en automatiseren van de overdracht van graphene naar 200 mm wafers, met als doel minimale schade en contaminatie voor een betrouwbare productie in de halfgeleiderindustrie. | Mkb-innovati... | € 152.985 | 2015 | Details |
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disordersThe MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes. | EIC Pathfinder | € 4.428.402 | 2022 | Details |
Laser digital transfer of 2D materials enabled photonics: from the lab 2 the fabThe L2D2 project aims to develop a green, scalable technology for growing and integrating high-quality graphene and 2D materials onto silicon substrates, enabling industrial applications and commercialization. | EIC Transition | € 2.499.975 | 2022 | Details |
Grafeen vensters: Schaalbare productie en integratie van grafeenvensters
Het project ontwikkelt prototype grafeen vensters voor Tunneling Electron Microscopie om real-time nanometerresolutie in vloeistoffen te bereiken, cruciaal voor Life Science en energieonderzoek.
CryoGrid
DENSsolutions en CryoSol-World ontwikkelen een innovatieve sample carrier voor Cryo-EM om de 3D-structuur van eiwitten beter te visualiseren en de toepassing in de farmaceutische industrie te versnellen.
Automated Transfer of Graphene
Dit project richt zich op het verbeteren en automatiseren van de overdracht van graphene naar 200 mm wafers, met als doel minimale schade en contaminatie voor een betrouwbare productie in de halfgeleiderindustrie.
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders
The MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes.
Laser digital transfer of 2D materials enabled photonics: from the lab 2 the fab
The L2D2 project aims to develop a green, scalable technology for growing and integrating high-quality graphene and 2D materials onto silicon substrates, enabling industrial applications and commercialization.