Making time-resolved cryo-EM available for the community of structural biologists: validate, improve, derisk
This project aims to develop and commercialize a novel time-resolved cryo-EM sample preparation method to enhance protein structure analysis and accessibility for users.
Projectdetails
Introduction
Knowledge of protein structure is fundamental for the understanding of biology, disease mechanisms, drug development, and biotechnology. Recent progress with electron cryogenic microscopy (cryo-EM) simplified and tremendously accelerated the determination of protein structures including multiple protein conformations.
Challenges in Protein Conformation Analysis
Many functionally important protein conformations and protein-protein complexes are transient and are not easily accessible by conventional cryo-EM. These transient states can, however, be freeze-trapped and their structures solved to high resolution using the time-resolved cryo-EM (trEM). Despite its long history and high interest from the cryo-EM community, technical difficulties prevented the spread of the methodology, and no commercial devices enabling trEM sample preparation exist.
Project Overview
During the ERC-CoG project, we developed a new approach to the preparation of trEM samples which has advantages over the other reported technologies. In this POC project, we propose to undertake steps that will explore the suitability of our technology for application to a wide variety of protein samples and to evaluate the commercial potential of the technology with the aim of bringing it to cryo-EM users rapidly.
Proposed Steps
To achieve this, we plan to:
- Expand the number of protein samples to be tested on our instrument, thus enabling rapid user access and simultaneous validation of the methodology.
- Perform additional research to further improve the method by addressing the remaining bottlenecks.
- Make steps towards defining the best process and materials for industrial production of microfluidic chips.
- Redesign the time-resolved plunger into a compact pre-industrial prototype.
Conclusion
These steps will broadly validate, improve, and derisk the technology to make it more attractive to cryo-EM instrumentation-making companies, facilitating the introduction of the technology to the cryo-EM community.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-7-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- VIB VZWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Phase Contrast STEM for Cryo-EMThis project aims to enhance cryo-electron tomography in biology using high-resolution scanning transmission EM, improving imaging quality and enabling new insights into cellular structures. | ERC ADG | € 2.499.987 | 2022 | Details |
Development of Reconstructed Electron Energy Loss techniques for Elemental Mapping in macromolecular structuresDevelop a novel method, REEL-EM, for atomic-resolution elemental mapping in macromolecular complexes to enhance structural accuracy and detect single atoms at 1-nm resolution. | ERC STG | € 1.723.334 | 2023 | Details |
4D scanning transmission electron microscopy for structural biologyThis project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples. | ERC SyG | € 7.489.397 | 2024 | Details |
In situ structural biology of human immune defenceDeveloping super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) to enhance in situ structural biology for antibody-mediated immunity and therapeutic advancements. | ERC COG | € 1.976.553 | 2025 | Details |
Phase Contrast STEM for Cryo-EM
This project aims to enhance cryo-electron tomography in biology using high-resolution scanning transmission EM, improving imaging quality and enabling new insights into cellular structures.
Development of Reconstructed Electron Energy Loss techniques for Elemental Mapping in macromolecular structures
Develop a novel method, REEL-EM, for atomic-resolution elemental mapping in macromolecular complexes to enhance structural accuracy and detect single atoms at 1-nm resolution.
4D scanning transmission electron microscopy for structural biology
This project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples.
In situ structural biology of human immune defence
Developing super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) to enhance in situ structural biology for antibody-mediated immunity and therapeutic advancements.