SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Super-resolution microscopy for semiconductor metrology

The MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

Super-resolution microscopy has revolutionized imaging by breaking what was believed to be unbreakable: the diffraction limit – which determines what a microscope can resolve. However, many disciplines in science and engineering cannot benefit from super-resolution microscopy, because practically all current super-resolution microscopes require fluorescence, often introduced by labelling – that is chemically modifying – the samples of interest.

Importance of the Semiconductor Industry

The semiconductor industry is the driver of digitization by producing ever smaller integrated circuits for faster computer chips, and has worldwide importance. The critical dimensions of the latest generation of chips are in the nanometer range, enabled by the breakthrough technology of extreme-ultraviolet nanolithography.

Quality Inspection Challenges

An efficient production process requires constant quality inspection of the printed features, either directly on the integrated circuits or on dedicated metrology targets. However, the resolution of current all-optical microscopy-based metrology methods cannot keep pace with the fast development of smaller structures by nanolithography.

High-Harmonic Generation Technique

Within my ERC Starting Grant, I demonstrated that high-harmonic generation – that is the frequency upconversion of laser pulses – can be optically suppressed and spatially confined in semiconductors without the need for labelling. This can be utilized as sub-diffraction emission for super-resolution scanning microscopy.

Development of MICROSEM

I will further develop this technique in MICROSEM in order to reach resolution below 100 nm in a conventional optical microscope operating in the visible and ultraviolet region, without the need for complicated vacuum equipment. This will enable crucial applications for semiconductor wafer metrology.

Future Applications and Collaboration

I will demonstrate new in-device metrology and pave the way for additional advanced at-resolution metrology schemes. To ensure knowledge transfer, I enlisted one of the key players in the semiconductor industry as a collaborator for MICROSEM.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-10-2024
Einddatum31-3-2026
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTENpenvoerder

Land(en)

Netherlands

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Super-resolution Field-Resolved Stimulated Raman Microscopy

This project aims to develop a super-resolution, label-free Raman microscope using femtosecond laser technology to non-invasively visualize subcellular structures with unprecedented sensitivity and resolution.

ERC Consolid...€ 1.996.250
2025
Details

Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolution

The project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution.

ERC Consolid...€ 2.082.500
2024
Details

Real-time, High-throughput, Coherent X-ray Microscopy: from Large-Scale Installations to Tabletop Device

HYPER aims to develop a cost-effective tabletop coherent XUV microscope for advanced nanoscale imaging, enhancing accessibility and understanding in optoelectronics and biomedical applications.

ERC Proof of...€ 150.000
2024
Details

Super-resolution magnetic correlation microscope

Develop a far-field super-resolution magnetic correlation microscopy platform to enhance understanding of 2D magnetic materials and advance spintronic device architectures.

ERC Consolid...€ 2.565.578
2024
Details

Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon Sources

The project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials.

ERC Proof of...€ 150.000
2024
Details
ERC Consolid...

Super-resolution Field-Resolved Stimulated Raman Microscopy

This project aims to develop a super-resolution, label-free Raman microscope using femtosecond laser technology to non-invasively visualize subcellular structures with unprecedented sensitivity and resolution.

ERC Consolidator Grant
€ 1.996.250
2025
Details
ERC Consolid...

Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolution

The project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution.

ERC Consolidator Grant
€ 2.082.500
2024
Details
ERC Proof of...

Real-time, High-throughput, Coherent X-ray Microscopy: from Large-Scale Installations to Tabletop Device

HYPER aims to develop a cost-effective tabletop coherent XUV microscope for advanced nanoscale imaging, enhancing accessibility and understanding in optoelectronics and biomedical applications.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Consolid...

Super-resolution magnetic correlation microscope

Develop a far-field super-resolution magnetic correlation microscopy platform to enhance understanding of 2D magnetic materials and advance spintronic device architectures.

ERC Consolidator Grant
€ 2.565.578
2024
Details
ERC Proof of...

Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon Sources

The project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials.

ERC Proof of Concept
€ 150.000
2024
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applications

QuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization.

EIC Accelerator€ 2.475.229
2024
Details

Kathodeluminescentie microscopie voor halfgeleider analyse

Delmic onderzoekt de haalbaarheid van innovatieve Kathodeluminescentie microscopie voor geavanceerde inspectie van complexe halfgeleiders om defecten en vertragingen te verminderen.

Mkb-innovati...€ 20.000
2021
Details

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition€ 2.489.571
2022
Details

HT-ASM: High Throughput Atom Scale Microscopy

Dit project ontwikkelt een ultra snel high-throughput Atomic Force Microscopy systeem voor in-line kwaliteitscontrole van geavanceerde IC's, gericht op de semiconductor industrie.

Mkb-innovati...€ 226.000
2019
Details

NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGING

The 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe.

EIC Pathfinder€ 2.999.999
2025
Details
EIC Accelerator

Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applications

QuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization.

EIC Accelerator
€ 2.475.229
2024
Details
Mkb-innovati...

Kathodeluminescentie microscopie voor halfgeleider analyse

Delmic onderzoekt de haalbaarheid van innovatieve Kathodeluminescentie microscopie voor geavanceerde inspectie van complexe halfgeleiders om defecten en vertragingen te verminderen.

Mkb-innovatiestimulering Topsectoren Haalbaarheid
€ 20.000
2021
Details
EIC Transition

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition
€ 2.489.571
2022
Details
Mkb-innovati...

HT-ASM: High Throughput Atom Scale Microscopy

Dit project ontwikkelt een ultra snel high-throughput Atomic Force Microscopy systeem voor in-line kwaliteitscontrole van geavanceerde IC's, gericht op de semiconductor industrie.

Mkb-innovatiestimulering Topsectoren R&D Samenwerking
€ 226.000
2019
Details
EIC Pathfinder

NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGING

The 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe.

EIC Pathfinder
€ 2.999.999
2025
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.