MUlti-spectral Scattering matrix for Enhanced skin imaging
The ERC REMINISCENCE project developed the DeepInsight microscope, enabling advanced non-invasive 3D imaging for early melanoma detection and skin disease analysis, with plans for commercialization.
Projectdetails
Introduction
During the ERC REMINISCENCE project, we developed a new microscope whose performances exceed our initial expectations. Based on a reflection matrix approach of wave imaging, this device called DeepInsight provides an unprecedented imaging performance.
Imaging Capabilities
It allows non-invasive, label-free, real-time, and three-dimensional imaging of tissues with a 1 mm penetration depth at a 500 nm resolution.
Advanced Features
Beyond the structural information provided by standard reflectivity images, it also enables quantitative imaging of tissues by mapping biomarkers such as:
- The refractive index
- Tissue dynamics
- Scattering strength
This patented innovation thus represents a paradigm shift in label-free microscopy.
Applications in Dermatology and Cosmetics
In the framework of this project, we want to investigate its extremely promising potential for the dermatology and cosmetics industry. Our proposed solution overcomes the fundamental limitations of existing microscopes (confocal / OCT) in terms of:
- Penetration depth
- Resolution
- 3D frame rate
Early Detection of Melanoma
It will be a turning point for the early detection of melanoma, which remains a blind spot for current technologies.
Non-Invasive Angiography
Beyond this specific problem, its real-time capabilities will be exploited for non-invasive angiography in order to identify subsurface vascular and structural features known to be associated with numerous skin diseases.
Future Plans
Following the PoC project, we plan to establish a start-up company to further develop the microscope and market it to hospitals and the cosmetics industry.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 31-8-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced X-ray Energy-sensitive Microscopy for Virtual HistologyThis project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions. | ERC COG | € 2.000.000 | 2023 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGINGThe 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe. | EIC Pathfinder | € 2.999.999 | 2025 | Details |
Het MICHRO project: Het Medical Imaging Chromodynamics OnderzoekstrajectChromodynamics ontwikkelt een innovatieve multispectrale camera voor fluorescentie microscopie om de beeldvorming in immuno-oncologie te verbeteren en de diagnostiek te versnellen. | MIT Haalbaarheid | € 20.000 | 2022 | Details |
Advanced X-ray Energy-sensitive Microscopy for Virtual Histology
This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGING
The 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe.
Het MICHRO project: Het Medical Imaging Chromodynamics Onderzoekstraject
Chromodynamics ontwikkelt een innovatieve multispectrale camera voor fluorescentie microscopie om de beeldvorming in immuno-oncologie te verbeteren en de diagnostiek te versnellen.