SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

A light-efficient microscope for fast volumetric imaging of photon starved samples

LowLiteScope aims to revolutionize bioluminescence microscopy by using AI-driven light field techniques for high-resolution 3D imaging of biological samples, enhancing research capabilities in life sciences.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

Bioluminescence microscopy offers a powerful tool for background-free imaging of biological samples without an excitation laser. This enabling technology would afford a wide range of applications in the life sciences, where fluorescence microscopy is prohibitive.

Current Limitations

Currently, commercial solutions for bioluminescence imaging suffer from low spatiotemporal resolution due to photon-starved samples.

Project Goals

LowLiteScope aims to overcome these limitations by radically redesigning the optical path, data acquisition, and post-processing based on artificial intelligence.

Innovative Approach

LowliteScope leverages a new light field approach to capture the spatial and angular information of light rays that pass through the sample. In contrast to conventional light field microscopes, this technique records three-dimensional images with high spatial resolution and a large depth of field.

Deep Learning Models

To reconstruct the 3D volume from single exposure light field images, we will use new deep learning models based on artificial intelligence (WP1). The use of generalized and optics-informed deep learning techniques will also increase the spatial resolution beyond conventional light field microscopes.

Performance Testing

We will test the performance of the LowLiteScope prototype using photosensitive samples and samples with high intrinsic autofluorescence (WP2) - two properties that often render long-term, high-resolution imaging via fluorescence microscopy difficult.

Adoption Strategy

Ultimately, success is measured by the ease of adopting our technology. To facilitate the adoption of LowLiteScope by the end user, we propose a new lens design, which can be used as a modular add-on to any conventional fluorescence microscope (WP3).

Conclusion

In summary, LowLiteScope marks a significant breakthrough in bioluminescence microscopy. Its ability to non-invasively capture 3D images of live cells and tissues with high precision will be an invaluable asset for the advancement of biomedical research.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2024
Einddatum30-6-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FUNDACIO INSTITUT DE CIENCIES FOTONIQUESpenvoerder

Land(en)

Spain

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Lensless label-free nanoscopy

This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.

ERC Starting...€ 1.500.000
2024
Details

Method for Integrated All-Optical Biological Analysis at Scale

Developing an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer.

ERC Proof of...€ 150.000
2024
Details

Time-based single molecule nanolocalization for live cell imaging

The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.

ERC Advanced...€ 2.498.196
2023
Details

Structuring Quantum Light for Microscopy

SQiMic aims to revolutionize optical microscopy by integrating quantum imaging and light structuring to enhance imaging of unlabeled biological specimens with improved resolution and contrast.

ERC Starting...€ 1.499.365
2022
Details

Smart, Event-Based Microscopy for Cell Biology

CyberSco.Py is a software that automates real-time image analysis in microscopy, enhancing experimental capabilities in quantitative cell biology through smart decision-making algorithms.

ERC Proof of...€ 150.000
2023
Details
ERC Starting...

Lensless label-free nanoscopy

This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.

ERC Starting Grant
€ 1.500.000
2024
Details
ERC Proof of...

Method for Integrated All-Optical Biological Analysis at Scale

Developing an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Advanced...

Time-based single molecule nanolocalization for live cell imaging

The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.

ERC Advanced Grant
€ 2.498.196
2023
Details
ERC Starting...

Structuring Quantum Light for Microscopy

SQiMic aims to revolutionize optical microscopy by integrating quantum imaging and light structuring to enhance imaging of unlabeled biological specimens with improved resolution and contrast.

ERC Starting Grant
€ 1.499.365
2022
Details
ERC Proof of...

Smart, Event-Based Microscopy for Cell Biology

CyberSco.Py is a software that automates real-time image analysis in microscopy, enhancing experimental capabilities in quantitative cell biology through smart decision-making algorithms.

ERC Proof of Concept
€ 150.000
2023
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition€ 2.489.571
2022
Details

Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorer

VOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping.

EIC Pathfinder€ 2.999.999
2025
Details

Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism

This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.

EIC Pathfinder€ 2.266.125
2023
Details

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.

EIC Pathfinder€ 3.018.312
2022
Details

Enabling the transition to 3D digital pathology

3DPATH aims to develop a clinically viable 3D tissue scanner using advanced light-sheet fluorescence microscopy to enhance histopathology accuracy and improve patient care globally.

EIC Transition€ 2.493.683
2025
Details
EIC Transition

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition
€ 2.489.571
2022
Details
EIC Pathfinder

Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorer

VOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping.

EIC Pathfinder
€ 2.999.999
2025
Details
EIC Pathfinder

Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism

This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.

EIC Pathfinder
€ 2.266.125
2023
Details
EIC Pathfinder

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.

EIC Pathfinder
€ 3.018.312
2022
Details
EIC Transition

Enabling the transition to 3D digital pathology

3DPATH aims to develop a clinically viable 3D tissue scanner using advanced light-sheet fluorescence microscopy to enhance histopathology accuracy and improve patient care globally.

EIC Transition
€ 2.493.683
2025
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.