Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
Projectdetails
Introduction
The NanoSCAN project aims to transform tissue analysis with a novel 3D spatial biology platform that provides crucial insights into cellular and tissue functions. Spatial biology visualizes the interaction of molecules with their 3D environment, which is essential for cell and tissue screening.
Challenges in Current Technologies
However, most spatial biology imaging technologies, based on wide-field microscopy, have limited spatial resolution and insufficient molecular profiling. A major obstacle to quantitative tissue imaging progress is the lack of a single instrument that can cover various complementary scales from tissue to molecule with high speed, high throughput, and high accuracy.
Proposed Solution
To address these limitations, we propose to develop a new imaging platform, the SAFe-nSCAN, which combines multi-scale optical microscopy solutions. This includes:
- Structured illumination microscopy for rapid cell and tissue inspection and classification.
- Single-molecule localization microscopy techniques for deeper and higher nanoscopic 3D information over preselected regions.
We will use an innovative chip-based technology developed under the PROCHIP FET-OPEN project (801336) to ensure robustness and accuracy of the measurements.
Application and Validation
We will validate and deploy this technology in relevant applications, with a focus on immuno-oncology, to advance personalized therapies.
Consortium Composition
The consortium consists of:
- Academic partners who will develop the technology.
- A non-profit association that will facilitate beta testing and promote the technology.
- An SME that will collaborate with a new startup company to manufacture chips and bring molecular resolution spatial biology to the market.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.489.162 |
Totale projectbegroting | € 2.489.162 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
- POLITECNICO DI MILANO
- CONSIGLIO NAZIONALE DELLE RICERCHE
- ABBELIGHT
- LASERLAB-EUROPE AISBL
- FORSCHUNGSVERBUND BERLIN EV
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting cardiac fibrosis with next generation RNA therapeuticsFIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness. | EIC Transition | € 2.499.482 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Predictive REagent-Antibody Replacement Technology stage 2-TranslationPRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment. | EIC Transition | € 800.000 | 2022 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
Targeting cardiac fibrosis with next generation RNA therapeutics
FIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Predictive REagent-Antibody Replacement Technology stage 2-Translation
PRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment.
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Single-Molecule Acousto-Photonic NanofluidicsSIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection. | ERC STG | € 1.499.395 | 2022 | Details |
Nano-Biological Contrast Agent Platform for MRI ImagingNANO-IMAGING aims to develop customizable, safe, and tissue-specific MRI contrast agents using metal-protein hybrid nanostructures to enhance diagnostic imaging efficiency. | ERC POC | € 150.000 | 2022 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Single-Molecule Acousto-Photonic Nanofluidics
SIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection.
Nano-Biological Contrast Agent Platform for MRI Imaging
NANO-IMAGING aims to develop customizable, safe, and tissue-specific MRI contrast agents using metal-protein hybrid nanostructures to enhance diagnostic imaging efficiency.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.