Responsive classifiers against hate speech in low-resource settings

Respond2Hate aims to empower users in low-resource settings to locally filter hate speech from social media using adaptive NLP models, enhancing online safety without relying on tech companies.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Hate speech is a worldwide phenomenon that is increasingly pervading online spaces, creating an unsafe environment for users. While tech companies address this problem by server-side filtering using machine learning models trained on large datasets, these automatic methods cannot be applied to most languages due to lack of available training data.

Project Aim

Based on recent results of the PI's ERC project on multilingual representation models in low-resource settings, Respond2Hate aims at developing a pilot browser extension that allows users to locally remove hateful content from their social media feeds themselves, without having to rely on the support of tech companies.

Cultural Context

Since hate speech is highly dependent on cultural context, responsive classifiers are needed that adapt to the individual environment. Commercial efforts focus on large-scale, general-purpose models which are often burdened with representation and bias problems, and therefore cope poorly with swiftly changing targets or information shift between regional contexts.

Model Development

In contrast, we seek to develop lightweight, adaptive models that require only a small dataset for initial fine-tuning by continuously enhancing model capabilities over time. This is achieved by applying state-of-the-art Natural Language Processing (NLP) and deep learning techniques for pre-trained language models, including:

  1. Low-resource transfer of hate speech representations from high-resource languages.
  2. Few-shot learning based on limited user feedback.

We have already successfully applied these methods in low-resource multilingual settings, and will now validate their use for hate speech filtering.

Empowering Users

By making hate speech detection and reduction available in "low-resource" countries with little representation in current training datasets, which are currently not served well by governments, industry, and NGOs, Respond2Hate will empower users to self-control their exposure to hate speech, fostering a healthier and safer online environment.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-11-2023
Einddatum30-4-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

A prototype system for obtaining and managing training data for multilingual learning

The project aims to empower less-resourced language communities to create parallel corpora for machine translation, enhancing language preservation and cultural heritage through an open-source prototype.

€ 150.000
ERC Proof of...

Development and Mass-dissemination of Intervention to Mobilize Pro-social Bystander Reactions to Hostile Content on Social Media

The STANDBYCOMMS project aims to enhance and disseminate a pro-social bystander intervention to combat online hostility through collaboration and scalable field testing.

€ 150.000
ERC Advanced...

Digital Hate: Perpetrators, Audiences, and (Dis)Empowered Targets

DIGIHATE aims to systematically investigate the emergence, tolerance, and impact of digital hate through a multidisciplinary approach, enhancing understanding to foster dignified online societies.

€ 2.499.591
ERC Starting...

Responsible Link-Recommendations in Dynamic Environments

This project aims to create computational models to assess and redesign link-recommendation algorithms for online social networks to promote cooperation and mitigate misinformation.

€ 1.500.000
ERC Proof of...

Mapping and Matching Content Diversity and Bias in EU Online Social Networks

PolarScopEU aims to develop a tool for measuring and mapping online political polarization in Greece, Portugal, and Spain, enhancing awareness of biases and improving understanding of political content.

€ 150.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Bias Neutraliser

CorTexter ontwikkelt een deep learning software om onbedoelde vooroordelen in recruitmentteksten te herkennen en te neutraliseren, waardoor gelijke kansen voor werkzoekenden worden bevorderd.

€ 20.000
Mkb-innovati...

Project Hominis

Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.

€ 20.000
Mkb-innovati...

Project POLIGEN-AI

Het project richt zich op het ontwikkelen van een betrouwbare "fact-based" chatbot om desinformatie te bestrijden en geïnformeerde beslissingen te ondersteunen, met aandacht voor technische en juridische haalbaarheid.

€ 20.000
Mkb-innovati...

Social Signal Isolation Processing and Delivery

Het project ontwikkelt de SS-IPD-software om relevante sociale media-informatie te filteren en te analyseren, wat bijdraagt aan innovatieve datamanagementtechnieken en bedrijfsinnovatie.

€ 200.000
Mkb-innovati...

PraatPraat

PraatPraat is een innovatieve software die met AI en SAVI® cyberpesten detecteert en voorkomt in geschreven en gesproken communicatie, gericht op een veiligere online omgeving voor jongeren.

€ 20.000