Non-uniform programmable integrated photonic waveguide meshes
The NP-Mesh project aims to enhance programmable photonic integrated waveguide meshes by embedding defect cells to improve flexibility and performance, leading to new intellectual property and commercialization.
Projectdetails
Introduction
Programmable integrated photonics (PIP) is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming. The work carried out within the Advanced Grant ERC-ADG-2016-741415 UMWPCHIP, of which I was the Principal Investigator, allowed me to lay the foundation for the first technical stages of a novel revolutionary concept, the Field Programmable Photonic Gate Array (FPPGA), developed in the context of a Proof-of-concept Grant ERC-POC-2019-859927-FPPAs.
Current Challenges
Currently, the core of the processor is a uniform 2D programmable photonic waveguide mesh, formed by replicating hexagonal unit cells. This layout suffers from limited flexibility in the spectral period and sampling time values. The challenge is to develop and demonstrate solutions that overcome these limitations and which can be easily incorporated into existing mesh designs.
Project Goals
In NP-Mesh, I aim to demonstrate and validate the concept of non-periodic programmable photonic integrated waveguide meshes formed by embedding defect cells into the otherwise uniform 2D hexagonal mesh. Including defect cells solves the problem of spectral period limitation through the exploitation of the Vernier effect, as well as the sampling time resolution limitation of the uniform waveguide mesh.
Working Roadmap
My working roadmap will include:
- Carrying out the required research activities linked to the development of the proposed technical concepts.
- Validating them through outsourced chip fabrication in an external foundry followed by measurement and characterization experiments carried out in my lab at UPV.
- Generating the new intellectual property rights (IPRs) for the new results via patent writing and application, and transferring the new IPR to the spinoff company iPronics, which I co-founded three years ago with the help of ERC-POC-2019-859927-FPPAs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 30-4-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAT POLITECNICA DE VALENCIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Rapid Programmable Photonic Integrated CircuitsThis project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency. | ERC Proof of... | € 150.000 | 2023 | Details |
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processorThe project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications. | ERC Starting... | € 1.499.325 | 2023 | Details |
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit EngineeringLIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology. | ERC Proof of... | € 150.000 | 2022 | Details |
Three dimensional INtegrated PhotonIcS to RevolutionizE deep LearningThis project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications. | ERC Consolid... | € 1.998.918 | 2022 | Details |
Integrated photonic circuit fabrication by femtosecond laser writing for quantum informationThe PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion. | ERC Proof of... | € 150.000 | 2022 | Details |
Rapid Programmable Photonic Integrated Circuits
This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor
The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering
LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.
Three dimensional INtegrated PhotonIcS to RevolutionizE deep Learning
This project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications.
Integrated photonic circuit fabrication by femtosecond laser writing for quantum information
The PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Innovating iN Smart Programmable IntegRatEd photonicsThe INSPIRE project aims to develop and demonstrate programmable photonic processors (FPPGAs) for enhanced computing performance and efficiency, targeting TRL5/6 readiness with three innovative prototypes. | EIC Transition | € 2.453.292 | 2022 | Details |
Nano electro-optomechanical programmable integrated circuitsNEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing. | EIC Pathfinder | € 2.999.924 | 2023 | Details |
Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavItyPALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques. | EIC Pathfinder | € 3.303.533 | 2022 | Details |
Smart PHotonic devices Using Novel metamaterialsThe SPHUN project aims to create a digital platform for an innovative library of metamaterial-based photonic building blocks to enhance the design of advanced photonic integrated circuits. | EIC Accelerator | € 1.799.999 | 2022 | Details |
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks. | EIC Transition | € 2.307.188 | 2022 | Details |
Innovating iN Smart Programmable IntegRatEd photonics
The INSPIRE project aims to develop and demonstrate programmable photonic processors (FPPGAs) for enhanced computing performance and efficiency, targeting TRL5/6 readiness with three innovative prototypes.
Nano electro-optomechanical programmable integrated circuits
NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.
Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavIty
PALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques.
Smart PHotonic devices Using Novel metamaterials
The SPHUN project aims to create a digital platform for an innovative library of metamaterial-based photonic building blocks to enhance the design of advanced photonic integrated circuits.
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.
PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks.