Three dimensional INtegrated PhotonIcS to RevolutionizE deep Learning
This project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications.
Projectdetails
Introduction
Neural networks revolutionize computation and already outperform humans according to many benchmarks. They have the potential to transform society and have already influenced Google to place artificial intelligence at the core (“AI first”) of business strategy. Governments and policy bodies worldwide focus on neural network-based computing as a vital future technology.
Current Challenges
Despite the evident promise, however, current architectures severely lose computational efficiency when applied to large neural networks and scale badly. The performance of current neural network hardware is orders of magnitude below what is theoretically possible, and the future development of artificial intelligence is therefore in jeopardy.
Proposed Solution
I will solve this problem by developing neural network processors using advanced photonic components, specifically enabling a breakthrough with three-dimensional integrated photonic waveguides to implement a biologically inspired, fully parallel and scalable architecture. This is not an incremental improvement, but rather a completely new and never-explored approach, which will revolutionize neural network hardware.
Implementation Plan
Based on this technology, I will create a fully programmable optical tensor processing unit by interfacing 3D waveguide Mach-Zehnder interferometers with a commercial SLM. The unit will calculate the connection of a neural network with speeds and energy efficiency exceeding the state of the art by two orders of magnitude, while programmability makes it widely applicable.
- Create a fully programmable optical tensor processing unit.
- Interface 3D waveguide Mach-Zehnder interferometers with a commercial SLM.
- Develop a second system implementing fully-fledged and programmable optical neural networks based on 3D waveguides and semiconductor lasers.
Conclusion
The proof of principle building blocks of the project are in place and I am recognized as a leading researcher in the field. The realization of this project will unlock doors to scalability, cascadability, and parallelism, and stimulate new research as well as applications in artificial intelligence.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.918 |
Totale projectbegroting | € 1.998.918 |
Tijdlijn
Startdatum | 1-12-2022 |
Einddatum | 30-11-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
- UNIVERSITE DE FRANCHE-COMTE
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Insect-Brain inspired Neuromorphic NanophotonicsDeveloping nanophotonic chips inspired by insect brains for energy-efficient autonomous navigation and neuromorphic computing, integrating sensing and processing capabilities. | EIC Pathfinder | € 3.229.534 | 2022 | Details |
Hybrid electronic-photonic architectures for brain-inspired computingHYBRAIN aims to develop a brain-inspired hybrid architecture combining integrated photonics and unconventional electronics for ultrafast, energy-efficient edge AI inference. | EIC Pathfinder | € 1.672.528 | 2022 | Details |
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processorThe project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications. | ERC STG | € 1.499.325 | 2023 | Details |
Nano electro-optomechanical programmable integrated circuitsNEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing. | EIC Pathfinder | € 2.999.924 | 2023 | Details |
Insect-Brain inspired Neuromorphic Nanophotonics
Developing nanophotonic chips inspired by insect brains for energy-efficient autonomous navigation and neuromorphic computing, integrating sensing and processing capabilities.
Hybrid electronic-photonic architectures for brain-inspired computing
HYBRAIN aims to develop a brain-inspired hybrid architecture combining integrated photonics and unconventional electronics for ultrafast, energy-efficient edge AI inference.
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor
The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.
Nano electro-optomechanical programmable integrated circuits
NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.