LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering
LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.
Projectdetails
Introduction
In LIQUORICE we will build an operational proof-of-concept of a general-purpose programmable photonic processor. This processor is intended to provide the photonics community with a flexible rapid prototyping technology, similar in use as an electronic FPGA, to stimulate new innovation and accelerate the adoption of photonic chip technology in diverse applications, beyond the traditional photonics markets of telecom and datacom.
Application Focus
In particular, we want to test this new photonic chip for use in programmable photonic test & measurement equipment. This is an application space where the chip’s flexibility is exceptionally useful, and which we have identified as an accessible beachhead market.
Circuit Design
Generic programmable circuits consist of a large mesh of optical waveguides connected together by electrically controlled phase shifters and tunable couplers. The LiqUORICE proof of concept will address a key challenge with these large-scale circuits: the difficulty of addressing thousands of electro-optic actuators.
Solution Approach
We approach this problem by using a liquid-crystal-on-silicon (LCOS) microdisplay backplane on which we bond our photonic waveguide circuits. The LCOS driver can address the liquid crystal underneath the waveguides in a granular way, controlling the flow of light on the chip.
Software Interface
This will also give us a direct software interface (as a display) through which we can configure the chip for optical routing and wavelength filtering. These basic functions will then be used to implement common optical measurement routines such as:
- Optical spectrum analyzer
- Autocorrelator
These will be tested in the lab.
Exploitation Potential
As part of LiqUORICE, we will further look into the exploitation potential of the technology. Specifically, we will evaluate the viability of a spin-off company, with the long-term ambition to become a viable alternative to custom photonic chips for emerging photonics markets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 31-12-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT GENTpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processorThe project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications. | ERC STG | € 1.499.325 | 2023 | Details |
Crystalline Oxides Platform for Hybrid Silicon PhotonicsThe CRYPTONIT project aims to develop a hybrid Si photonics platform using zirconia-based crystalline oxides to enhance nonlinear optical devices and optical modulation for advanced communication systems. | ERC ADG | € 2.499.986 | 2024 | Details |
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks. | EIC Transition | € 2.307.188 | 2022 | Details |
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT NetworksQOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets. | EIC Pathfinder | € 3.481.857 | 2025 | Details |
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor
The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.
Crystalline Oxides Platform for Hybrid Silicon Photonics
The CRYPTONIT project aims to develop a hybrid Si photonics platform using zirconia-based crystalline oxides to enhance nonlinear optical devices and optical modulation for advanced communication systems.
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.
PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks.
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT Networks
QOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets.