Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavIty
PALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques.
Projectdetails
Introduction
The elder wand of telecom wizards would coherently change the color of light. But while the laws of physics do allow mutating the photon chroma, all attempts to date have been very inefficient for large frequency mismatches.
Project Overview
PALANTIRI will initiate a technological breakthrough by providing a viable development path for integrating the coherent and efficient interconversion of information between microwaves and light on a chip. We propose a radically new approach building on a quadripartite (microwave photon-magnon-phonon-optical photon) hybridization process.
Methodology
The idea is to exploit opto-mechanical effects while inserting a magnetic element that maintains high cooperativity:
- With a mechanical mode through magneto-acoustic coupling.
- With the microwave antenna through inductive coupling.
- By exploiting magnetic texture to achieve perfect matching of the microwave precession profile with the optical mode.
This opportunity has recently emerged from progress in material science, which allows the fabrication of freestanding micron-size slabs of ultra-high quality magnetic insulator yttrium iron garnet. The suspension greatly suppresses any leakage of phononic or photonic oscillating energy through the substrate.
Scientific Objectives
PALANTIRI's scientific objectives are to deliver within 42 months a proof of principle on-chip analog coherent frequency converter with efficiency of the order of unity (TRL2).
Expected Outcomes
The delivered phase-sensitive device will provide the breakthroughs needed to achieve a radical expansion of the connectivity capacity of a backhaul network for enabling high-speed internet access for everyone from any location. It will also provide the elementary brick to build the quantum-ready internet infrastructure of the future.
Consortium
To achieve these goals, our consortium consists of six academic partners (CEA, MLU, CNRS, TUD, ICN2, MPG) from four EU countries (FR, DE, NL, ES) and one industrial partner (TSST).
Budget
The global budget of the proposal is 3.3M.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.303.533 |
Totale projectbegroting | € 3.303.533 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESpenvoerder
- MARTIN-LUTHER-UNIVERSITAT HALLE-WITTENBERG
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
- TECHNISCHE UNIVERSITEIT DELFT
- FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
- DEMCON TSST BV
- RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
- UNIVERSITE PARIS-SACLAY
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Integrated photonic circuit fabrication by femtosecond laser writing for quantum informationThe PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion. | ERC POC | € 150.000 | 2022 | Details |
Silicon opto-electro-mechanics for bridging the gap between photonics and microwavesThe SPRING project aims to achieve efficient microwave-optical conversion and quantum state transfer using a novel optomechanical coupling approach in silicon chips for advanced communication and computing applications. | ERC COG | € 2.491.486 | 2024 | Details |
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks. | EIC Transition | € 2.307.188 | 2022 | Details |
Rapid Programmable Photonic Integrated CircuitsThis project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency. | ERC POC | € 150.000 | 2023 | Details |
Integrated photonic circuit fabrication by femtosecond laser writing for quantum information
The PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion.
Silicon opto-electro-mechanics for bridging the gap between photonics and microwaves
The SPRING project aims to achieve efficient microwave-optical conversion and quantum state transfer using a novel optomechanical coupling approach in silicon chips for advanced communication and computing applications.
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.
PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks.
Rapid Programmable Photonic Integrated Circuits
This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.