Rapid Programmable Photonic Integrated Circuits

This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Photonic integrated circuits enable trapping of photons, the fundamental particles of light, in a waveguide on a chip to allow their manipulation, similar to electrons in classical integrated circuits. While photonic circuits offer superior performance in speed and energy efficiency, their application in computing has so far been limited by their programmability.

Limitations of Current Technologies

Electronic integrated circuits are based on transistors that until recently have become both smaller and more energy-efficient according to Moore's law. Photonic circuits, on the other hand, are controlled through phase modulators that typically rely on the same materials used in the electronic industry but suffer from fundamental limitations. These limitations have hindered the implementation of dedicated scalable photonic computing hardware.

Proposed Solution

We propose to explore an innovative and efficient phase modulation technology utilizing the novel material platform of atomically thin semiconducting transition metal dichalcogenides. This technology promises to outperform conventional technologies in all key performance metrics, including:

  1. Energy consumption
  2. Modulation efficiency
  3. Optical losses

Integrated Photonics Platform

One promising integrated photonics platform to host these novel devices is represented by laser-written waveguides. This approach allows for a rapid design cycle, thereby drastically reducing timescales compared to those provided by conventional semiconductor foundries.

Project Aim

This ERC Proof of Concept project aims at leveraging atomically thin semiconductors to implement programmable photonic integrated circuitry.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-7-2023
Einddatum31-12-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC STG

Tunable Nanoengineered Transition Metal Dichalcogenides for Quantum Nanophotonics

The TuneTMD project aims to develop a tunable on-chip integrated optical circuit using nanoengineered TMDs to create identical single photons for quantum computing applications.

€ 1.499.578
ERC STG

Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor

The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.

€ 1.499.325
EIC Pathfinder

Nano electro-optomechanical programmable integrated circuits

NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.

€ 2.999.924
EIC Pathfinder

RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURE

RESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance.

€ 2.455.823