BiasScore

BiasScore biedt een innovatieve oplossing om genderbias in geschreven content te identificeren en te waarborgen dat deze inclusief is.

Subsidie
€ 20.000
2023

Projectdetails

Inleiding

How can someone verify if they are gender-neutral or inclusive and if their writing matches the requirements of any given target group? For example, let's consider an employee responsible for marketing and communication across a company in the Netherlands.

Belang van Genderneutraal Schrijven

After finishing writing a series of articles that need to be published, it is essential to ensure that the writing is gender-neutral and free from possible implicit bias.

Problemen met Huidige Analyse

However, entrusting colleagues to conduct an analysis would not guarantee anything since everyone could hold bias (even unconsciously) differently.

Gebrek aan Informatie

For an individual and even within an entire company, there may not be enough data or knowledge internally to accurately understand how different genders experience events, texts, and speech.

Vooringenomenheid in Data

Most datasets are taken from a male perspective, based on male data, or generated by men. Data is collected inconsistently across gender groups or does not exist, which results in gender bias being embedded in almost every form of written content.

Voorbeeld in de Journalistiek

Even in journalism, there is no check if an article is written from a male or female perspective.

Markt-specifieke Problemen

Lack of diversity in training data, difficulties identifying subtle biases, and ethical considerations like privacy and data security are examples of market-specific problems.

Innovatie

Our solution enables media companies, education facilities, and many more to prove that an article or another form of content is gender-inclusive.

Keuze voor de Lezer

This means that we allow the potential reader to choose not to read the information that does not have our Stamp of Approval of gender inclusivity.

Taalbenadering van de Oplossing

The innovation of the solution stands in its linguistic approach to identifying gender bias in written content by not only flagging words but also looking at descriptive writing and tone.

Aanpasbaarheid en Verbetering

It can also be customized to meet the specific needs of different industries and organizations and can improve over time as it is used.

Schaalbare Oplossing

The Bias Score provides a scalable solution to a complex problem that has historically been difficult to address.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 20.000
Totale projectbegroting€ 60.000

Tijdlijn

Startdatum1-8-2023
Einddatum31-7-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • Stichting Fe/male Switchpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen MIT Haalbaarheid

Mkb-innovati...

Bias Neutraliser

CorTexter ontwikkelt een deep learning software om onbedoelde vooroordelen in recruitmentteksten te herkennen en te neutraliseren, waardoor gelijke kansen voor werkzoekenden worden bevorderd.

€ 20.000
Mkb-innovati...

Bias Score for Recruitment software

BCR ontwikkelt een tool om bias in recruitmentsoftware te identificeren en te verminderen, waardoor inclusiviteit en de beste kandidaten worden bevorderd.

€ 20.000
Mkb-innovati...

Equilo – Automatic Gender Impact Consultancy

Het project ontwikkelt een platform dat met behulp van AI en Big Data organisaties snel en kosteneffectief advies biedt om te voldoen aan de genderdoelstellingen van de SDG's.

€ 19.360
Mkb-innovati...

Generiek linguïstisch AI-voorspellingsmodel voor eerlijke HR-besluitvorming

Seedlink ontwikkelt een generiek AI-voorspellingsmodel voor HR-besluitvorming, gericht op het verbeteren van nauwkeurigheid en eerlijkheid zonder specifieke klantdata, toegankelijk voor kleinere bedrijven.

€ 20.000
Mkb-innovati...

Project Hominis

Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.

€ 20.000

Vergelijkbare projecten uit andere regelingen

ERC Proof of...

Developing Bias Auditing and Mitigation Tools for Self-Assessment of AI Conformity with the EU AI Act through Statistical Matching

Act.AI aims to enhance AI fairness and compliance with the EU AI Act by providing a versatile, plug-and-play tool for continuous bias monitoring across various data types and industries.

€ 150.000
ERC Proof of...

Mapping and Matching Content Diversity and Bias in EU Online Social Networks

PolarScopEU aims to develop a tool for measuring and mapping online political polarization in Greece, Portugal, and Spain, enhancing awareness of biases and improving understanding of political content.

€ 150.000
ERC Starting...

Measuring and Mitigating Risks of AI-driven Information Targeting

This project aims to assess the risks of AI-driven information targeting on individuals, algorithms, and platforms, and propose protective measures through innovative measurement methodologies.

€ 1.499.953
ERC Starting...

Novel diffuse Optical method to combat skin color bias in non-invasive optical biomarker sensing devices such as pulse oximeters

NOBIAS aims to develop a groundbreaking bias-free optical biomarker sensing technology using multilayer TDDOS to enhance accuracy and eliminate skin color bias in medical devices.

€ 1.582.349
ERC Starting...

Diving into Data Diversity for Fair and Robust Natural Language Processing

DataDivers aims to create a framework for measuring data diversity in NLP datasets to enhance model fairness and robustness through empirical and theoretical insights.

€ 1.500.000