Diving into Data Diversity for Fair and Robust Natural Language Processing

DataDivers aims to create a framework for measuring data diversity in NLP datasets to enhance model fairness and robustness through empirical and theoretical insights.

Subsidie
€ 1.500.000
2025

Projectdetails

Introduction

Despite great progress in the field of Natural Language Processing (NLP), the field is still struggling to ensure the robustness and fairness of models. So far, NLP has prioritized data size over data quality. Yet there is growing evidence suggesting that the diversity of data, a key dimension of data quality, is crucial for fair and robust NLP models.

Current Challenges

Many researchers are therefore trying to create more diverse datasets, but there is no clear path for them to follow. Even the fundamental question “How can we measure the diversity of a dataset?” is currently wide open. It is both surprising and concerning that we still lack the tools and theoretical insights to understand, improve, and leverage data diversity in NLP.

Project Goals

DataDivers will:

  1. Develop the first-ever framework to measure data diversity in NLP datasets.
  2. Investigate how data diversity impacts NLP model behavior.
  3. Develop novel approaches that harness data diversity for fairer and more robust NLP models.

Definition of Diversity

I operationally define the diversity of a text collection as the variability of texts along specific dimensions (e.g., semantic, lexical, and sociolinguistic). Sociolinguistic diversity, in particular, is an overlooked but crucial dimension, which I am committed to addressing.

Methodology

DataDivers will break new ground by taking a comprehensive view of data diversity, which is urgently needed for robust and fair NLP. Its approach will be both theoretical and empirical. It will combine insights from disciplines that have developed methodologies to quantify data diversity with rigorous empirical experimentation.

Unique Perspective

DataDivers will take a unique view on data diversity: measuring it at the dataset level and across contexts for individual features. Finally, DataDivers will use its framework to develop diversity-informed data collection and model training methods.

Impact

DataDivers’ results will impact the full NLP development pipeline—from data collection to evaluation—and open up a new, urgently needed area of research.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • UNIVERSITEIT UTRECHTpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Natural Language Understanding for non-standard languages and dialects

DIALECT aims to enhance Natural Language Understanding by developing algorithms that integrate dialectal variation and reduce bias in data and labels for fairer, more accurate language models.

€ 1.997.815
ERC Starting...

Next-Generation Natural Language Generation

This project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications.

€ 1.420.375
ERC Starting...

Statistical theory and methodology for the combination of heterogeneous and distributed data

Develop new statistical methodologies to address data heterogeneity and measurement errors across diverse datasets, enhancing evidence-based advancements in science and policy.

€ 1.499.689
ERC Starting...

Dynamics-Aware Theory of Deep Learning

This project aims to create a robust theoretical framework for deep learning, enhancing understanding and practical tools to improve model performance and reduce complexity in various applications.

€ 1.498.410
ERC Consolid...

Education policies that work: A context-sensitive ‘big data’ approach

EDUPOL conducts a comprehensive analysis of neoliberal and democratic educational policies' interplay to identify effective policy combinations for improving quality and equality in education.

€ 1.930.120

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Bias Neutraliser

CorTexter ontwikkelt een deep learning software om onbedoelde vooroordelen in recruitmentteksten te herkennen en te neutraliseren, waardoor gelijke kansen voor werkzoekenden worden bevorderd.

€ 20.000
Mkb-innovati...

Project Hominis

Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.

€ 20.000
Mkb-innovati...

Een standaard voor productiewaardige Deep Learning systemen

Het project richt zich op het verbeteren van audio- en video-analyse systemen door samenwerking tussen Media Distillery, NovoLanguage en een partner, met als doel hogere kwaliteit en snellere ontwikkeling via gedeelde technologieën.

€ 104.061