Structure and functions of terrestrial phycospheres
This project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota.
Projectdetails
Introduction
Microscopic algae release organic compounds to the region immediately surrounding their cells, known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These bacteria consume algal photoassimilates and provide beneficial functions to their host, in a process that resembles the establishment of microbial communities associated with the roots and rhizospheres of land plants.
Importance of Phycosphere Communities
Phycosphere communities have been well studied in aquatic environments, where they are known to play important roles in nutrient and energy fluxes. For many species of algae, interactions with their associated phycosphere bacteria can also provide beneficial functions, often mediated by metabolic exchanges.
Research Gap
Despite the known importance of these associations in aquatic environments, their role in terrestrial ecosystems and parallels with the root microbiota of land plants have not yet been resolved.
Project Goal
The goal of this project is to employ a newly developed reductionist host-microbiota system based on the model chlorophyte alga Chlamydomonas reinhardtii to study the structure and functions of terrestrial phycospheres and identify the core ecological principles that explain the overlap between the root and phycosphere microbiota.
Methodology
Using a variety of gnotobiotic systems and synthetic communities composed of phycosphere bacteria, we will study the genetic and molecular mechanisms that drive host-microbiota interactions in C. reinhardtii as well as their evolutionary origins and conservation in other lineages of green algae and land plants.
Synthetic Microcosms
Finally, we will design and build synthetic phototrophic microcosms based on terrestrial phycospheres using bioreactors to explore the ecological and molecular mechanisms underpinning microbiota diversity, stability, and functions.
Potential Impact
This project has the potential to reveal fundamental, quantitative principles governing the dynamic behaviour of host-associated microbial communities.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.544 |
Totale projectbegroting | € 1.499.544 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 29-2-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Structural and Metabolic connection in oceanic plastid symbiosesSymbiOcean aims to dissect the metabolic interactions in plastid symbiosis of marine plankton using novel imaging and genetic tools to enhance understanding of carbon flux in ocean ecosystems. | ERC COG | € 2.203.975 | 2023 | Details |
Photosynthetic Activity in Low Micro-Algal Density SuspensionsThe project aims to develop a high sensitivity absorption difference spectrometer to measure photosynthesis in diluted microalgal samples, enhancing our understanding of aquatic photosynthetic diversity. | ERC POC | € 150.000 | 2024 | Details |
Characterising the role of microbial behaviour and nutrient exchanges in coral symbiosesThis project aims to uncover the chemical cues and processes that enable microbial symbionts to colonize coral hosts, enhancing our understanding of coral health amidst reef degradation. | ERC COG | € 1.999.672 | 2025 | Details |
Structural and Metabolic connection in oceanic plastid symbioses
SymbiOcean aims to dissect the metabolic interactions in plastid symbiosis of marine plankton using novel imaging and genetic tools to enhance understanding of carbon flux in ocean ecosystems.
Photosynthetic Activity in Low Micro-Algal Density Suspensions
The project aims to develop a high sensitivity absorption difference spectrometer to measure photosynthesis in diluted microalgal samples, enhancing our understanding of aquatic photosynthetic diversity.
Characterising the role of microbial behaviour and nutrient exchanges in coral symbioses
This project aims to uncover the chemical cues and processes that enable microbial symbionts to colonize coral hosts, enhancing our understanding of coral health amidst reef degradation.