Structural and Metabolic connection in oceanic plastid symbioses
SymbiOcean aims to dissect the metabolic interactions in plastid symbiosis of marine plankton using novel imaging and genetic tools to enhance understanding of carbon flux in ocean ecosystems.
Projectdetails
Introduction
Single-celled marine plankton, that sustain oceanic food webs and strongly impact the global carbon cycle, can establish various kinds of symbioses to gain energy. Plastid symbiosis, whereby host cells temporarily integrate microalgal cells (photosymbiosis) or just their photosynthetic plastids (kleptoplastidy) as intracellular solar-powered carbon factories, is a key interaction in worldwide surface oceans.
Ecological and Evolutionary Importance
Plastid symbiosis was at the origin of a major evolutionary innovation that spread photosynthesis across eukaryotes, transforming the biosphere. Despite this ecological and evolutionary importance, very little is known about how a photosynthetic machinery is structurally and metabolically integrated into a host cell and what mechanisms allow cells to transport sugars, the main photosynthetic product and energetic currency.
Central Concept of SymbiOcean
The central concept of SymbiOcean is that plastid symbiosis forms a metabolic unit where the source (engulfed microalgae/plastid) is metabolically engineered by the sink (host) to produce and transfer carbon energy.
Research Approach
Working with original non-model symbiotic systems, I will develop novel imaging and genetic tools to mechanistically dissect this key metabolic interaction at different scales.
-
Multimodal Subcellular Imaging and Photophysiology
Combining multimodal subcellular imaging and photophysiology, I will first unveil how the photosynthetic machinery is morphologically and metabolically remodeled in symbiosis to provide benefits to the host. -
Investigation of Sugar Transporters
I will then investigate the identity, localization, and role of sugar transporters underlying the source-sink carbon flux in plastid symbiosis, providing the basis to evaluate the evolutionary and environmental forces that shape the metabolic connection.
Conclusion
Crossing boundaries between structural biology, eco-physiology, and evolution, this ambitious project will resolve fundamental mechanisms in widespread planktonic symbioses, advancing our understanding of the functioning and carbon flux of marine ecosystems.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.203.975 |
Totale projectbegroting | € 2.203.975 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Environmentally-informed functional characterisation of the secondary red chloroplast proteomeThis project aims to uncover the success of secondary red chloroplasts in marine ecosystems through proteomic analysis, phylogenomics, and CRISPR mutagenesis, linking evolution to ecological function. | ERC STG | € 1.498.352 | 2023 | Details |
Structure and functions of terrestrial phycospheresThis project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota. | ERC STG | € 1.499.544 | 2023 | Details |
Flux Race Investigation for Dissection Of Metabolic-bottlenecks: Leveraging the tremendous potential of algal metabolic diversityThis project aims to identify metabolic bottlenecks in photosynthetic cells using advanced flux analyses to enhance crop yields and meet future food production demands sustainably. | ERC STG | € 1.937.500 | 2023 | Details |
Mapping metabolic responses to understand coexistence and community functioningThis project aims to explore how species interactions influence the metabolism of marine phytoplankton, affecting community productivity and responses to biodiversity loss and global warming. | ERC STG | € 1.488.550 | 2024 | Details |
Environmentally-informed functional characterisation of the secondary red chloroplast proteome
This project aims to uncover the success of secondary red chloroplasts in marine ecosystems through proteomic analysis, phylogenomics, and CRISPR mutagenesis, linking evolution to ecological function.
Structure and functions of terrestrial phycospheres
This project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota.
Flux Race Investigation for Dissection Of Metabolic-bottlenecks: Leveraging the tremendous potential of algal metabolic diversity
This project aims to identify metabolic bottlenecks in photosynthetic cells using advanced flux analyses to enhance crop yields and meet future food production demands sustainably.
Mapping metabolic responses to understand coexistence and community functioning
This project aims to explore how species interactions influence the metabolism of marine phytoplankton, affecting community productivity and responses to biodiversity loss and global warming.