Photosynthetic Activity in Low Micro-Algal Density Suspensions
The project aims to develop a high sensitivity absorption difference spectrometer to measure photosynthesis in diluted microalgal samples, enhancing our understanding of aquatic photosynthetic diversity.
Projectdetails
Introduction
Photosynthesis is at the intersection of many vexing problems facing humanity, including feeding an ever-increasing population, securing the agricultural economy, replacing fossil fuels with renewable energy, and responding to climate changes. Studying this fundamental process and exploring its functional biodiversity is a crucial necessity.
Importance of Photosynthesis
Indeed, photosynthesis is a perfect tool for environmental monitoring in a context of climate changes; it probes in a non-invasive way the physiological state of a photosynthetic organism and its response to the environment.
Potential for Biotechnological Advancements
Moreover, the discovery across diversity of new response mechanisms to environmental cues, new metabolic pathways, or regulatory mechanisms also constitutes a reservoir for biotechnological mining or crop improvement.
Current Measurement Techniques
In-depth measurements of plant photosynthesis are now possible in the field with the development of dedicated portable instruments, combining chlorophyll fluorescence and absorption difference spectrometry.
Limitations in Aquatic Environments
However, such approaches do not exist in the aquatic world, where most of the diversity of photosynthetic organisms is yet located. This is because the sensitivity of absorption difference spectrometers is not sufficient for natural samples characterized by very low concentrations of microalgae.
Challenges in Microalgal Research
Furthermore, a very small proportion of microalgal species are currently cultivated, and of these, very few are “lab rats” reaching high cell concentrations. For all these reasons, a huge part of photosynthetic biodiversity escapes us.
Project Proposal
In this project, we propose to develop a high sensitivity absorption difference spectrometer which will allow measuring photosynthesis in diluted samples of one or more microalgal species.
Expected Impact
We believe that the development of such an instrument will constitute a real breakthrough in the study of photosynthesis, allowing us to explore the diversity of architectures, pathways, and regulations of aquatic photosynthesis.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 31-10-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Environmentally-informed functional characterisation of the secondary red chloroplast proteomeThis project aims to uncover the success of secondary red chloroplasts in marine ecosystems through proteomic analysis, phylogenomics, and CRISPR mutagenesis, linking evolution to ecological function. | ERC STG | € 1.498.352 | 2023 | Details |
Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspensionsThis project aims to investigate the fluid dynamics of living microalgae in bioreactors through multi-scale experiments to optimize growth and product yield while minimizing biofilm formation. | ERC COG | € 1.994.870 | 2023 | Details |
Dynamic Regulation of photosynthEsis in light-Acclimated organisMsDREAM aims to enhance plant cultivation efficiency by developing innovative sensing technologies and models for optimizing photosynthesis under controlled lighting conditions. | EIC Pathfinder | € 3.090.026 | 2022 | Details |
Structure and functions of terrestrial phycospheresThis project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota. | ERC STG | € 1.499.544 | 2023 | Details |
Environmentally-informed functional characterisation of the secondary red chloroplast proteome
This project aims to uncover the success of secondary red chloroplasts in marine ecosystems through proteomic analysis, phylogenomics, and CRISPR mutagenesis, linking evolution to ecological function.
Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspensions
This project aims to investigate the fluid dynamics of living microalgae in bioreactors through multi-scale experiments to optimize growth and product yield while minimizing biofilm formation.
Dynamic Regulation of photosynthEsis in light-Acclimated organisMs
DREAM aims to enhance plant cultivation efficiency by developing innovative sensing technologies and models for optimizing photosynthesis under controlled lighting conditions.
Structure and functions of terrestrial phycospheres
This project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota.