Rediscovering the Wanderer: restoration of sympathico-vagal disbalance in irritable bowel syndrome by neuromodulation – a novel therapeutic concept

This project aims to restore vagal tone in IBS patients through transcutaneous electrical vagus nerve stimulation, potentially transforming treatment by identifying a neurosignature for personalized therapy.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

Common colloquial phrases like ‘gut feeling’ or ‘butterflies in my belly’ are not just idioms but reflect on the unique communication between gut and brain. The principal interface for this interaction is the autonomic nervous system — a largely subconscious system that manages bodily functions through a delicate balance between its two branches: the sympathetic and parasympathetic nervous systems.

Vagus Nerve and Chronic Pain

The vagus nerve is the main component of the latter. Diminished vagal tone resulting in increased sensitivity to pain is characteristic of many chronic pain disorders, including irritable bowel syndrome (IBS). People with IBS have frequent and often severe abdominal pain.

Understanding IBS

While its etiology remains poorly understood, IBS is now assumed to be caused by a malfunctioning of the gut–brain axis, often manifesting in sympathetico–vagal disbalance. However, no established therapies currently target this neurological disturbance.

Hypothesis and Approach

I hypothesize that restoring the sympathico–vagal disbalance through autonomic neuromodulation can be an important novel therapeutic target in IBS. To achieve this, I will use transcutaneous electrical vagus nerve stimulation via the auricular nerve.

Development of Vagal-Autonomic Neurosignature

I will also develop a novel multimodal ‘vagal-autonomic neurosignature’ through combining actively and passively recorded biometrics and high-power field neuroimaging. This profile will allow identification of patients who could benefit from the new treatment approach.

Mechanisms of Action

Simultaneously, I will investigate mechanisms of action in a comprehensive manner, using experimental models and tools I have previously developed.

Expected Impact

My project is foreseen to fundamentally change the therapeutic landscape of IBS and other pain disorders by providing high-quality clinical and mechanistic evidence for the efficacy of vagal neuromodulation. Identifying a neurological signature of patients that likely benefit from this approach would represent a major breakthrough in individualizing therapeutic efforts in IBS.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-5-2023
Einddatum30-4-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITEIT MAASTRICHTpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

PERSONALIZED NON-INVASIVE NEUROMODULATION IN PAIN

PersoNINpain aims to personalize chronic pain treatment by using brain connectivity metrics to optimize non-invasive neuromodulation techniques like rTMS for individual patients.

€ 1.618.278
ERC COG

Neuronal control of fascia

The NEUROFASCIA project aims to explore the fascia's role in brain-immune communication and its implications for pain and inflammation, using advanced techniques to characterize and modulate this tissue.

€ 2.000.000
ERC POC

Targeting peripheral nerves: a method for therapeutic modulation of inflammatory disease with non-invasive temporal interference

The project aims to develop a non-invasive, patch-based nerve stimulator using Temporal Interference to precisely target inflammation-regulating nerves, enhancing treatment for inflammatory diseases.

€ 150.000
ERC COG

Revolutionizing diabetes management by combining in silico models and AI control for vagus neuroprostheses

The project aims to develop a personalized Vagus Nerve Stimulation neuroprosthesis for automated glucose regulation in diabetics, utilizing AI to optimize stimulation and minimize side effects.

€ 1.999.201