Light-responsive microalgal living materials

The project aims to develop the first light-responsive microalgae-based living materials with dynamic shapes and tunable properties for applications in soft robotics and photosynthetic devices.

Subsidie
€ 1.500.000
2022

Projectdetails

Introduction

Nature fabricates materials with remarkable properties, having the ability to grow, move, and sense their environment. Such dynamic and interactive materials are in strong contrast with man-made synthetic materials. Recent scientific interest has emerged to incorporate living cells into materials to form living materials, using most often muscle cells or bacteria.

Microalgae-Based Living Materials

While underexplored, microalgae-based living materials are highly promising due to the light-driven movement of microalgae. The aim of this ERC project is to develop the first microalgae-based photosynthetic living material with a dynamically light-controllable shape and with locally tuned (mechanical) properties.

Fabrication Process

The fabrication of light-responsive microalgal living materials will be possible through novel fundamental knowledge that we will gain regarding the growth and motion of microalgae within a porous hydrogel. Although this constrained environment mimics one of the microalgae's natural habitats (soil), we have limited understanding of the microalgae behavior within such an environment.

  1. Investigation of Cell Movement
    We will first investigate how cells move within a porous environment and how they respond to light, with the goal of using light for 3D patterning.

  2. Mechanical Reinforcement
    We will then explore how the hydrogel-based living material can be locally mechanically reinforced with cell-secreted polymers.

  3. Harnessing Light Response
    Finally, we will investigate how to harness the microalgae light response as a means to create a soft actuator.

Research Team Expertise

My independent research team uniquely combines expertise in microalgae cell biophysics and in engineered living materials, and we are thus ideally positioned to take on the challenge of creating microalgae-based living materials dynamically controlled by light.

Potential Applications

This ERC project opens up a new class of materials with life-like functionalities such as shape change and light-sensing, which are likely to find wide applications, from soft robots to photosynthetic devices.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-2-2022
Einddatum31-1-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITEIT DELFTpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspensions

This project aims to investigate the fluid dynamics of living microalgae in bioreactors through multi-scale experiments to optimize growth and product yield while minimizing biofilm formation.

€ 1.994.870
ERC COG

Multimodal Sensory-Motorized Material Systems

MULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities.

€ 1.998.760
ERC COG

Additive Manufacturing of Living Composite Materials

This project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques.

€ 1.999.491
ERC ADG

Life-Inspired Soft Matter

This project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics.

€ 2.500.000