Multimodal Sensory-Motorized Material Systems
MULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities.
Projectdetails
WHAT
MULTIMODAL will develop sensory-motorized material systems that perceive several coupled environmental stimuli and respond to a combination of these via controlled motor functions, shape-change, or locomotion. The sensory-motorized materials will be trained to strengthen upon repetitive action; they can heal upon injury and mechanically adapt to different environments. They will be utilized in the design of soft robots with autonomous and interactive functions.
HOW
We will utilize shape-changing liquid crystal networks (LCNs) that undergo controlled untethered motions in response to photochemical, (photo)thermal, and humidity-triggered activation.
Gated Control Strategies
Coupling between these stimuli will allow for gated control strategies over the shape changes. I expect that the gated control strategies, in combination with stimuli-induced diffusion from surface to bulk of the LCN, will enable advanced robotic functionalities.
Diffusion Process
The diffusion process will be used for supramolecular crosslinking and formation of interpenetrated dynamic polymer networks with the LCN, to allow for trainable gaiting for versatile locomotion control. We will also make mechanically adaptable amphibious grippers for autonomous object recognition.
WHY
Technological disruptions are often due to new materials and fabrication technologies. Paradigm changes in how materials are perceived have profound effects on our society, well-being, and the ways we see the world.
Striving for Change
Here, we strive for a paradigm change in robotic materials. By taking inspiration from biological sensory-motor interactions, we will develop MULTIMODAL materials with autonomous and interactive features.
Advancing Capabilities
These features go far beyond the capabilities of conventional stimuli-responsive materials, allowing us to take inanimate, shape-changing materials one ambitious step closer to the motor functions of living species.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.760 |
Totale projectbegroting | € 1.998.760 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TAMPEREEN KORKEAKOULUSAATIO SRpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Reversible Heterolytic Mechanophores for Dynamic Bulk MaterialsReHuse aims to develop reversible mechanophores that enable dynamic mechanoresponsiveness in polymers, paving the way for recyclable materials and innovative atmospheric water harvesters. | ERC STG | € 1.498.401 | 2023 | Details |
From light fueled self-oscillators to light communicating material networksONLINE aims to create self-oscillatory bioinspired materials that communicate autonomously through light, enabling interactive networks akin to biological systems. | ERC STG | € 1.495.500 | 2023 | Details |
Smart Hybrid Materials for Opto(electro)ionicsSmartHyMat aims to develop hybrid halide perovskites as adaptive materials for innovative, sustainable devices in energy production and nanorobotics through molecular design and synthesis. | ERC STG | € 2.123.241 | 2024 | Details |
Inter materials and structures mechanoperception for self learningIMMENSE aims to develop self-learning, adaptive materials and structures that can sense, signal, and react to environmental stimuli, paving the way for innovative applications in various fields. | ERC ADG | € 2.500.000 | 2024 | Details |
Reversible Heterolytic Mechanophores for Dynamic Bulk Materials
ReHuse aims to develop reversible mechanophores that enable dynamic mechanoresponsiveness in polymers, paving the way for recyclable materials and innovative atmospheric water harvesters.
From light fueled self-oscillators to light communicating material networks
ONLINE aims to create self-oscillatory bioinspired materials that communicate autonomously through light, enabling interactive networks akin to biological systems.
Smart Hybrid Materials for Opto(electro)ionics
SmartHyMat aims to develop hybrid halide perovskites as adaptive materials for innovative, sustainable devices in energy production and nanorobotics through molecular design and synthesis.
Inter materials and structures mechanoperception for self learning
IMMENSE aims to develop self-learning, adaptive materials and structures that can sense, signal, and react to environmental stimuli, paving the way for innovative applications in various fields.