Life-Inspired Soft Matter
This project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics.
Projectdetails
Introduction
To fulfil the quest for increasingly functional materials, biology has already offered inspiration towards advances in materials science. So far, bioinspired materials include, e.g., liquid- and dirt-repelling surfaces, structural colours, biomimetic composites, strong fibers, tissue templating, and underwater adhesives.
Current Developments
On the other hand, stimulus-responsive, shape memory, and reconfigurable materials have been presented with switchable functional properties. They are typically in global or local energy equilibrium, and their properties do not evolve or learn to allow new responses.
Future Challenges
The next challenge is to explore whether some of the characteristics considered typical for life could inspire new behaviours of artificial soft matter towards life-inspired materials.
Proposed Approaches
Herein I suggest three approaches:
- Voltage controlled dynamic out-of-equilibrium dissipative mechanical properties and temperature-based switching between dynamic and static properties.
- Light and voltage-driven self-regulation with feedback loops for adaptation, homeostasis, and oscillations.
- Optical spiking for dynamic structural colours.
Impact and Applications
The impact of this project arises from demonstrators and paradigm-changing concepts for materials memory, biological learning-inspired processes, and dynamic feedback control. The underlying embodied intelligence and adaptability pave ways to new materials concepts.
In the long run, materials with such properties are foreseen, e.g., in human-device interfacing, artificial skin, prostheses, technical aids, wearables, soft robots, and medical applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- AALTO KORKEAKOULUSAATIO SRpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multimodal Sensory-Motorized Material SystemsMULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities. | ERC COG | € 1.998.760 | 2023 | Details |
Bioinspired composite architectures for responsive 4 dimensional photonicsBIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications. | ERC STG | € 1.498.579 | 2023 | Details |
From light fueled self-oscillators to light communicating material networksONLINE aims to create self-oscillatory bioinspired materials that communicate autonomously through light, enabling interactive networks akin to biological systems. | ERC STG | € 1.495.500 | 2023 | Details |
Additive Manufacturing of Living Composite MaterialsThis project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques. | ERC COG | € 1.999.491 | 2023 | Details |
Multimodal Sensory-Motorized Material Systems
MULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities.
Bioinspired composite architectures for responsive 4 dimensional photonics
BIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications.
From light fueled self-oscillators to light communicating material networks
ONLINE aims to create self-oscillatory bioinspired materials that communicate autonomously through light, enabling interactive networks akin to biological systems.
Additive Manufacturing of Living Composite Materials
This project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques.