Jam with the flow: Microgel-based (bio)inks that assemble during printing
Developing microgel-based materials for extrusion-based 3D printing to create stable, heterogeneous scaffolds with precise control over local properties for biomedical applications.
Projectdetails
Introduction
Many of nature’s materials have exceptional properties because their structural organization resulted from the on-demand processing of compartmentalized materials. I want to translate this principle to extrusion-based 3D printing (EBP).
Background
EBP is a booming fabrication approach in tissue engineering, as it provides control over material deposition in the submillimetre range in a cost-effective manner. However, due to the many requirements for printable (bio)materials (called inks), only a limited number of chemistries can be effectively used. Typically, homogeneous network compositions are obtained, even though biomedical and other applications require highly controlled inhomogeneities. Approaches providing high control over local material structure and composition are lacking.
Proposed Solution
To provide a solution, I will develop a new class of microgel-based materials that:
- Jam due to the on-demand induced microgel swelling.
- Undergo secondary crosslinking, both in the flow.
This results in a one-step printing of stable heterogeneous scaffolds with locally varying properties and compositions, relevant for mimicking real tissues.
Advantages of the Approach
Importantly, the approach:
- Eliminates jamming steps before printing.
- Yields unprecedented control over local material composition and structure in the flow, down to the sub-micrometre range.
- Does not require post-printing crosslinking steps to stabilize the printed structures.
Inspiration and Generalizability
Inspired by nature’s compartmentalized materials and supported by preliminary measurements, my microgels will serve not just as pre-defined building blocks but also as material reservoirs during printing.
The approach will be generalizable to different material systems and chemistries and, as such, holds great promise for a new generation of hydrogels and advanced inks with structural and functional properties precisely controlled during and via the printing process.
Impact
This will impact fields from tissue engineering to soft robotics, agriculture, food, and cosmetics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.075.000 |
Totale projectbegroting | € 2.075.000 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- RIJKSUNIVERSITEIT GRONINGENpenvoerder
- POLITECHNIKA SLASKA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A novel support material for 3D bioprinting and post-printing tissue growth: Print and GrowThe "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications. | ERC Proof of... | € 150.000 | 2022 | Details |
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogelsmorphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth. | ERC Starting... | € 1.499.906 | 2023 | Details |
Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hydrogel BiomaterialsThe project aims to develop tough, spatiotemporally responsive hydrogels by combining dynamic supramolecular assemblies with covalent bonds for innovative biomaterial applications. | ERC Consolid... | € 2.000.000 | 2024 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC Consolid... | € 2.969.219 | 2022 | Details |
Bioactive reinforcing bioink for hybrid bioprinting of implantable boneThe project aims to develop 'BioForceInk,' a bioactive bioink for hybrid 3D bioprinting of vascularized bone implants, enhancing mechanical strength and biological functionality for clinical applications. | ERC Proof of... | € 150.000 | 2024 | Details |
A novel support material for 3D bioprinting and post-printing tissue growth: Print and Grow
The "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications.
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hydrogel Biomaterials
The project aims to develop tough, spatiotemporally responsive hydrogels by combining dynamic supramolecular assemblies with covalent bonds for innovative biomaterial applications.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Bioactive reinforcing bioink for hybrid bioprinting of implantable bone
The project aims to develop 'BioForceInk,' a bioactive bioink for hybrid 3D bioprinting of vascularized bone implants, enhancing mechanical strength and biological functionality for clinical applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
PRInted Symbiotic Materials as a dynamic platform for Living Tissues productionPRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications. | EIC Pathfinder | € 2.805.403 | 2022 | Details |
High-throughput ultrasound-based volumetric 3D printing for tissue engineeringSONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research. | EIC Pathfinder | € 2.999.625 | 2025 | Details |
Unprecedented photolithographic structuring of novel light-sensitive poly(amino acid) materials– a paradigm shift in delivering biocompatible devicesPOLINA aims to revolutionize bioprinting and medical devices by combining innovative light-sensitive materials with advanced photolithography for improved tissue compatibility and drug discovery. | EIC Pathfinder | € 2.882.322 | 2024 | Details |
PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.
High-throughput ultrasound-based volumetric 3D printing for tissue engineering
SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.
Unprecedented photolithographic structuring of novel light-sensitive poly(amino acid) materials– a paradigm shift in delivering biocompatible devices
POLINA aims to revolutionize bioprinting and medical devices by combining innovative light-sensitive materials with advanced photolithography for improved tissue compatibility and drug discovery.