A novel support material for 3D bioprinting and post-printing tissue growth: Print and Grow
The "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications.
Projectdetails
Introduction
Three-dimensional (3D) bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material, and undergo gelation through diverse cross-linking mechanisms.
Advantages and Challenges
It offers high fidelity and precise fabrication of complex structures based on the living tissue properties. However, the transition of cell mass mixed with the bioink into functional native-like tissue requires post-printing cultivation in vitro.
An often-overlooked drawback of 3D bioprinting is the non-uniform shrinkage and deformation of printed constructs during the post-printing tissue maturation period. This leads to highly variable and unpredictable engineered constructs, posing a challenge for the technology to meet applicative requirements.
Proposed Solution
We propose to develop a novel technology of "Print and Grow," 3D bioprinting into a specially designed microgel aimed to enhance the long-term structural stability of the printed objects by providing structural support and a possibility for live monitoring during tissue maturation.
Preliminary Testing
Our preliminary testing of the “Print and Grow” method demonstrated accurate bioprinting with high tissue viability while preserving the construct shape and size, unlike current state-of-the-art approaches.
Future Goals
We aim to:
- Optimize the support material properties.
- Develop scalable and reproducible fabrication techniques.
- Test the “Print and Grow” for a wide range of tissue types and adjust the microgel according to specific tissue requirements.
Finally, we will study the in vivo transplantation possibility of the tissue generated through the “Print and Grow” process.
Conclusion
The results of our proof of concept project may lead to the emergence of universal and user-friendly 3D bioprinting technology for regenerative medicine, drug discovery, and the cultured meat industry.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
PRInted Symbiotic Materials as a dynamic platform for Living Tissues productionPRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications. | EIC Pathfinder | € 2.805.403 | 2022 | Details |
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogelsmorphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth. | ERC STG | € 1.499.906 | 2023 | Details |
3D Printing of Ultra-fideLity tissues using Space for anti-ageing solutions on EarthThe project aims to develop a novel bioprinting technology in microgravity to create advanced cardiac models for studying ageing and drug efficacy, enhancing biofabrication and space research. | EIC Pathfinder | € 4.597.578 | 2023 | Details |
Holographic Optical Tweezing Bioprinting (HOTB): Towards precise manipulation of cells for artificial multi-scaled vascularized tissues/organ printing.The HOT-BIOPRINTING project aims to revolutionize tissue engineering by developing a holographic optical tweezing bioprinter for high-resolution, automated 3D bioprinting of complex, vascularized tissues. | ERC COG | € 1.965.525 | 2024 | Details |
PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
3D Printing of Ultra-fideLity tissues using Space for anti-ageing solutions on Earth
The project aims to develop a novel bioprinting technology in microgravity to create advanced cardiac models for studying ageing and drug efficacy, enhancing biofabrication and space research.
Holographic Optical Tweezing Bioprinting (HOTB): Towards precise manipulation of cells for artificial multi-scaled vascularized tissues/organ printing.
The HOT-BIOPRINTING project aims to revolutionize tissue engineering by developing a holographic optical tweezing bioprinter for high-resolution, automated 3D bioprinting of complex, vascularized tissues.