PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.
Projectdetails
Introduction
The PRISM-LT aims at creating a flexible platform for next generation living tissue manufacturing based on Hybrid Living Materials.
Bio-Ink Design
We plan to design a novel bio-ink where stem cells are integrated in a support matrix enriched with engineered helper cells (either bacteria or yeasts, depending on the application and requirements).
Bioprinting Process
Tuning the operational parameters of the bioprinting process, we will cast down the material controlling the mechanical properties of each voxel. This will result in a 3D patterned structure where stem cells are locally induced to initiate their differentiation towards different lineages.
Stem Cell and Helper Cell Interaction
As far as stem cells proliferate, the helpers remain in a quiescent state. However, when the stem cells get stimulated by the local (printed) mechanics and enter a differentiation pathway, they start secreting a pool of lineage-specific metabolites.
The helper cells are designed to:
- Sense these early markers of differentiation.
- Respond by producing in-situ the corresponding growth factors, providing the relevant chemical guidance.
Helper cells within the platform amplify the initial lineage commitment in each area and dynamically sustain differentiation on a longer term.
Project Implementation
During the project, we will implement this strategy and develop two independent symbiotic materials, targeting biomedical and food applications, respectively.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.805.403 |
Totale projectbegroting | € 2.805.403 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- IN SRL IMPRESA SOCIALEpenvoerder
- CHALMERS TEKNISKA HOGSKOLA AB
- STICHTING RADBOUD UNIVERSITEIT
- BICO GROUP AB
- CELLINK BIOPRINTING AB
- UNIVERSIDADE DE AVEIRO
- UNIVERSITY OF GLASGOW
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A novel support material for 3D bioprinting and post-printing tissue growth: Print and GrowThe "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications. | ERC POC | € 150.000 | 2022 | Details |
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogelsmorphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth. | ERC STG | € 1.499.906 | 2023 | Details |
Human based bioinks to engineer physiologically relevant tissuesHumanINK aims to validate human-based bioinks for 3D bioprinting, creating advanced cell culture environments to enhance drug development and reduce reliance on animal testing. | ERC POC | € 150.000 | 2022 | Details |
Jam with the flow: Microgel-based (bio)inks that assemble during printingDeveloping microgel-based materials for extrusion-based 3D printing to create stable, heterogeneous scaffolds with precise control over local properties for biomedical applications. | ERC STG | € 2.075.000 | 2025 | Details |
A novel support material for 3D bioprinting and post-printing tissue growth: Print and Grow
The "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications.
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
Human based bioinks to engineer physiologically relevant tissues
HumanINK aims to validate human-based bioinks for 3D bioprinting, creating advanced cell culture environments to enhance drug development and reduce reliance on animal testing.
Jam with the flow: Microgel-based (bio)inks that assemble during printing
Developing microgel-based materials for extrusion-based 3D printing to create stable, heterogeneous scaffolds with precise control over local properties for biomedical applications.