Illuminating the Dark MicroProteome in Innate Immunity
MicroIMMUNE aims to uncover the microproteome in innate immune cells using computational and synthetic biology to explore their functions and interactions, potentially revolutionizing immune response understanding.
Projectdetails
Introduction
Genome annotation, transcriptomic and proteomic pipelines have traditionally dismissed proteins encoded by short open reading frames (sORF) known as microproteins. This provides a pool of unexplored functional genes. Despite the increasing body of work in identifying the microproteome in different model organisms and cell lines, only a few have been functionally studied, showing diverse regulatory roles in multiple cellular pathways.
Project Overview
In MicroIMMUNE, I present a 3-aim workflow combining computational and synthetic biology, protein and genetic engineering approaches designed to systematically uncover the microproteome atlas and investigate its interactome and functional role in innate immune cells.
Aims
We aim to:
- Identify microproteins expressed in innate immune cells under resting and stimulating conditions, using state-of-the-art computational and experimental approaches to study the microproteome.
- Develop genetic code expansion technologies in innate immune cells to incorporate non-canonical amino acids to study the localization and binding partners of microproteins.
- Elucidate the function of microproteins in innate immune cells by combining genetic engineering with an array of high-throughput functional assays and automated analysis pipelines.
Research Questions
Our research output will address key questions such as:
- What is the microproteome atlas in innate immune cells and how does it vary upon activation?
- Where are the microproteins localized and in which protein-protein interactions are they involved?
- What functions do different microproteins play in innate immune cells?
Significance
Understanding the role of microproteins in innate immune cells can revolutionize our understanding of the immune response at a fundamental level and open new avenues for therapeutic interventions in which new antimicrobial peptides or druggable targets could be discovered.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 30-4-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UMEA UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC Starting... | € 1.499.980 | 2023 | Details |
Architecture of Peripheral Neuroimmune Circuits and SynapsesThis project aims to explore neuro-ILC2 interactions in vivo using innovative labelling tools to enhance understanding of neuroimmune dynamics and their implications for tissue health and disease. | ERC Advanced... | € 3.500.000 | 2024 | Details |
Negative Regulation of Inflammatory Responses Revealed with Camelid NanobodiesThe project aims to develop new cell biology tools to uncover intricate signaling networks that downregulate inflammation, focusing on the roles of NLRC3 and NLRX1 in controlling pro-inflammatory responses. | ERC Consolid... | € 1.997.828 | 2024 | Details |
T cell regulation by fed state bacterial metabolitesThis project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health. | ERC Starting... | € 1.499.548 | 2024 | Details |
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and CancerThis project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets. | ERC Starting... | € 2.025.000 | 2022 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Architecture of Peripheral Neuroimmune Circuits and Synapses
This project aims to explore neuro-ILC2 interactions in vivo using innovative labelling tools to enhance understanding of neuroimmune dynamics and their implications for tissue health and disease.
Negative Regulation of Inflammatory Responses Revealed with Camelid Nanobodies
The project aims to develop new cell biology tools to uncover intricate signaling networks that downregulate inflammation, focusing on the roles of NLRC3 and NLRX1 in controlling pro-inflammatory responses.
T cell regulation by fed state bacterial metabolites
This project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health.
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and Cancer
This project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseasesThe project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications. | EIC Pathfinder | € 3.920.718 | 2024 | Details |
Precision Nutrition to optimize immune response for metabolic healthNUTRIMMUNE investigates the impact of precision nutrition on immune responses in obesity-related NCDs, aiming to establish dietary recommendations through multi-omics analysis and intervention studies. | EIC Pathfinder | € 4.318.432 | 2024 | Details |
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseases
The project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications.
Precision Nutrition to optimize immune response for metabolic health
NUTRIMMUNE investigates the impact of precision nutrition on immune responses in obesity-related NCDs, aiming to establish dietary recommendations through multi-omics analysis and intervention studies.