Architecture of Peripheral Neuroimmune Circuits and Synapses

This project aims to explore neuro-ILC2 interactions in vivo using innovative labelling tools to enhance understanding of neuroimmune dynamics and their implications for tissue health and disease.

Subsidie
€ 3.500.000
2024

Projectdetails

Introduction

Maintenance of health requires the coordination of multiple cellular networks. For example, the immune and nervous systems cooperate to regulate tissue homeostasis. In agreement, our recent work demonstrates that innate lymphoid cells (ILC) integrate neuronal signals to control tissue health and immunity.

Paradigm Shift

These findings are provoking a paradigm shift in our understanding of the immune response, neuroimmune crosstalk, and its potential therapeutic value. Nevertheless, the dynamics of neuroimmune modalities remain elusive, and progress in the field has been hindered by the lack of approaches to explore the identity and plasticity of neuroimmune interactions in vivo.

Hypothesis

Here, we hypothesize that dynamic circuitry codes orchestrate neuro-ILC2 interactions and disease outcomes. To test this hypothesis, we have developed a set of disruptive intercellular labeling neuroimmune toolboxes that we termed KISS and LIPSTIC, which can probe the dynamics of neuro-ILC2 axes in vivo, with cellular specificity and single-cell resolution.

Research Plan

Using these innovative platforms, we plan to:

  1. Unravel the architecture of pulmonary neuro-ILC2 circuits.
  2. Define cellular identities, outcomes, and plasticity at the neuroimmune interface.
  3. Sequentially unravel unappreciated neuro-ILC2 synaptic communication.
  4. Define the ultrastructure of these intercellular entities using high-resolution imaging.

Investigation of Neuronal Partners

Finally, by conditionally harnessing the activity of synaptic neuronal partners during airway inflammation and infection, we will investigate their impact on ILC2, their environment, and on disease progression.

Conclusion

Together, these experiments will tackle multiple facets of pioneer, frontier questions, bringing to bear an array of cutting-edge technologies to address and advance, with unprecedented mechanistic and conceptual detail, how the neuroimmune interactome unfolds, in health and disease.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 3.500.000
Totale projectbegroting€ 3.500.000

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FUNDACAO D. ANNA DE SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUDpenvoerder

Land(en)

Portugal

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Network Synergies in Tissue Homeostasis and Stromal Prevention of Inflammatory Disease.

This project aims to uncover the mechanisms of tissue homeostasis and stromal biology to prevent inflammation onset, using advanced bioimaging and computational techniques for therapeutic advancements.

€ 1.499.514
ERC STG

Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and Cancer

This project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets.

€ 2.025.000
ERC STG

Illuminating body-brain communication channels at the choroid plexus and their impact on brain physiology.

The BrainGate project aims to elucidate the gut-blood-choroid plexus-brain communication axis's role in brain function and development using innovative genetic and transcriptomic techniques.

€ 1.499.514
ERC COG

Negative Regulation of Inflammatory Responses Revealed with Camelid Nanobodies

The project aims to develop new cell biology tools to uncover intricate signaling networks that downregulate inflammation, focusing on the roles of NLRC3 and NLRX1 in controlling pro-inflammatory responses.

€ 1.997.828