T cell regulation by fed state bacterial metabolites
This project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health.
Projectdetails
Introduction
Intestinal microbial communities expand the functional capabilities of the host via their metabolic attributes. From energy harvest to the production of vitamins, the gut microbiota shapes mammalian physiology and is often considered a postnatally developed “organ”. Yet, the microbiome poses a formidable challenge to the immune system: How can we host trillions of bacteria without mounting an inflammatory response?
Gut Immune Homeostasis
Gut immune homeostasis relies on the balanced action of suppressive and inflammatory T cell subsets. I discovered that bacterial metabolism of bile acids and dietary fibers promotes the differentiation of suppressive T cells.
Challenges in Understanding Immunoregulation
Given the complexity of the microbiome, finding other immunoregulatory cues deployed by gut bacteria and their mechanisms of action remains a major challenge, and the logic behind these tolerance mechanisms is not understood.
Proposed Framework
I will use a novel conceptual framework to bridge this gap: based on my previous findings, I postulate that immunoregulatory bacterial molecules are produced in response to food intake. Within this emerging paradigm, I selected two new groups of bacterial molecules for immediate investigation and developed a strategy to identify novel putative immunoregulatory candidates based on a careful examination of microbial metabolism after food intake.
Methodology
I will find the molecular targets of active molecules using chemical screening and chemoproteomic methods and test metabolites in vivo by colonizing germ-free mice with genetically manipulated bacterial strains.
Expertise and Collaboration
The proposed work is grounded on my strong expertise in host-microbe interactions and takes advantage of the state-of-the-art biochemistry facilities at my hosting institution and of the complementary skill sets of my collaboration network.
Comprehensive Interrogation
This synergistic combination will allow for a comprehensive interrogation of immunological tolerance to gut commensals: from metabolites and their molecular targets to their functional relevance for intestinal health.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.548 |
Totale projectbegroting | € 1.499.548 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Impact Of The Gut Microbiota On Host Cells Energy Metabolism: Role In Health And In Inflammatory bowel diseaseThe ENERGISED project aims to explore how altered gut microbiota affects host cell energy metabolism in inflammatory bowel diseases to develop new microbiota-based therapies. | ERC COG | € 1.999.265 | 2022 | Details |
Innate lymphoid cells and tissue adaptation to changing metabolic needsThis project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases. | ERC ADG | € 2.379.266 | 2022 | Details |
Impact Of The Gut Microbiota On Host Cells Energy Metabolism: Role In Health And In Inflammatory bowel disease
The ENERGISED project aims to explore how altered gut microbiota affects host cell energy metabolism in inflammatory bowel diseases to develop new microbiota-based therapies.
Innate lymphoid cells and tissue adaptation to changing metabolic needs
This project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases.