Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”

EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.

Subsidie
€ 2.430.625
2023

Projectdetails

Introduction

EvOoC aims at developing smart mechanically active Organs-on-Chip platforms as clinically relevant in vitro setups to unravel mechanisms underlying tissue regeneration and progression of unmet diseases.

Background

A decade ago, developmental engineering (DE) proposed to model in vitro clinically relevant tissue replicas by recapitulating embryonic developmental events. Despite physical forces having recently been suggested as the main driver of developmental processes, mechanical conditioning has never prevailed as a key DE strategy. This is related to a lack in current in vitro mechanobiology setups, mainly based on open-loop systems, which disregard the fact that the native mechanical environment varies in time as a function of tissue state itself.

Vision

EvOoC's vision is to elevate mechanobiology as the leading DE approach through a ground-breaking paradigm, named mechanical re-evolution. This is based on the high-risk/high-gain hypothesis that an iterative manipulation of mechanical forces is necessary to guide in vitro adult tissue development at unprecedented levels.

Methodology

Towards this vision, I will deliver a new method (Evolving OoC, EvOoC), integrating three enabling functions:

  1. Move - to apply native-inspired mechanical forces to tissues in vitro;
  2. Sense - to monitor their comprehensive effect on tissue development;
  3. Adapt - to modulate forces as a function of tissue responses through machine learning (ML)-based algorithms, towards an unsupervised tissue evolution.

Test Cases

I will take advantage of two paradigmatic test cases (cartilage and heart) to showcase the power of mechanical re-evolution in guiding in vitro tissue physiological and pathological states, towards the identification of a brand-new class of mechanotherapeutics for unmet pathologies.

Impact

By combining principles of microfabrication, DE, mechanobiology, and ML, EvOoC will revolutionize basic studies in tissue development and disease modeling, facilitating innovative translational strategies to tackle tissue repair in manifold applications.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.430.625
Totale projectbegroting€ 2.430.625

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • POLITECNICO DI MILANOpenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC POC

Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing

ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.

€ 150.000
ERC COG

Redesigning aortic endograft: enabling in-situ personalized aneurysm healing

EPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models.

€ 1.991.225
ERC ADG

Multiscale mechanobiological synergies in vascular homeostasis, ageing and rejuvenation

JuvenTwin aims to revolutionize vascular ageing treatment by using multiscale digital twins to simulate and develop therapies targeting mechanobiological effects in aged arteries.

€ 2.795.438
ERC ADG

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

€ 3.475.660