SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing

ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

In nature, all biological material from the cell to the tissue level is subjected to continuous mechanical stress and strain. These mechanical cues play an essential role in several biological processes and can determine the fate of a healing or a cancerous process, among many others.

Need for a Robust Test Platform

Therefore, research activities focusing on studying the deterministic nature of these processes need a robust test platform that allows for reproducing these mechanically-varying environments. Such a system would significantly contribute to improving in-vitro testing of therapies and drug discovery, incorporating the essential influence of mechanics in pharmaceutical and biotechnological companies.

Limitations of Current Approaches

However, the current approaches are restricted to basic science methods with important limitations. This lack of a suitable system hinders the translation of basic science in mechanobiology to its application in the industrial-technological field.

Proposed Solution: ISBIOMECH

ISBIOMECH proposes a novel intelligent system to control the mechanical environment of cellular/tissue materials, to be commercially exploited as laboratory equipment for mechanobiology research and pathological treatment testing.

Features of the Novel Device

The novel device and associated software will provide the first commercially available system to allow for robust and reproducible in-vitro testing of mechanically-influenced biological processes. More concretely, the system will use magneto-responsive substrates allowing for non-invasive, multidimensional, and real-time control of complex deformation modes on cellular/tissue materials.

Implementation and Validation

This technology will be implemented and validated by demonstration activities at stakeholders' labs to address timely mechanobiological studies in:

  1. Epithelial wound healing
  2. Neurological disorders
  3. Cardiac pathology

Potential Impact

The proposed system has the potential to open the experimental path to improve current treatments in, e.g., cancer pathologies, pathological skin scarring, or fibrotic heart remodeling during myocardial infarction.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-6-2023
Einddatum30-11-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSIDAD CARLOS III DE MADRIDpenvoerder

Land(en)

Spain

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

ERC Advanced...€ 3.475.660
2025
Details

3D screening system to cultivate tissue and automatically stimulate and quantify its mechanical properties

The project aims to develop the TissMec system for automated 3D human tissue creation and screening to expedite drug candidate evaluation and improve the drug development process.

ERC Proof of...€ 150.000
2024
Details

Validation of a novel device for real-time, long-term measurement of cellular forces

CELL-FORCE aims to validate Elastic Resonator Interference Stress Microscopy for non-destructive imaging of cellular forces, enhancing research and commercial applications in cell biomechanics.

ERC Proof of...€ 150.000
2024
Details

5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering

Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.

ERC Starting...€ 1.750.000
2024
Details

Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation

This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.

ERC Starting...€ 1.499.381
2022
Details
ERC Advanced...

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

ERC Advanced Grant
€ 3.475.660
2025
Details
ERC Proof of...

3D screening system to cultivate tissue and automatically stimulate and quantify its mechanical properties

The project aims to develop the TissMec system for automated 3D human tissue creation and screening to expedite drug candidate evaluation and improve the drug development process.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Proof of...

Validation of a novel device for real-time, long-term measurement of cellular forces

CELL-FORCE aims to validate Elastic Resonator Interference Stress Microscopy for non-destructive imaging of cellular forces, enhancing research and commercial applications in cell biomechanics.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Starting...

5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering

Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.

ERC Starting Grant
€ 1.750.000
2024
Details
ERC Starting...

Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation

This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.

ERC Starting Grant
€ 1.499.381
2022
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration

BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.

EIC Pathfinder€ 4.039.541
2022
Details

Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord

Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.

EIC Pathfinder€ 3.537.120
2023
Details
EIC Pathfinder

Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration

BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.

EIC Pathfinder
€ 4.039.541
2022
Details
EIC Pathfinder

Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord

Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.

EIC Pathfinder
€ 3.537.120
2023
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.