Redesigning aortic endograft: enabling in-situ personalized aneurysm healing
EPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models.
Projectdetails
Introduction
Forty years ago, the endograft (EG) enabled the endovascular treatment of aortic aneurysm (AoA) and revolutionized vascular surgery. Still, since then, its technological concept has remained substantially unchanged: EG is a passive device aimed at treating the AoA in its late stage, not to cure the disease, even when discovered early.
This proposal introduces a bio-engineered process to redesign EGs as 3D bio-printed, bioresorbable devices loaded with active drug components and validated in-vitro to enable the paradigm shift: from end-stage treatment to early personalized healing.
Challenges
To this aim, EPEIUS must tackle three open challenges:
- Available (animal) models often fail to predict human safety and efficacy for candidate therapies.
- Potentially effective drugs are challenging to deliver in therapeutic concentrations at the target.
- Consequently, there is a limited capacity for AoA healing even for compounds that were preclinically promising.
Hypothesis
We hypothesize that these challenges can be solved simultaneously by designing and fabricating a human in-vitro model of AoA where we can track AoA progression in the presence/absence of bioengineered EG, delivering therapeutic drugs. Grounded on a multi-disciplinary approach, EPEIUS will act as the “trojan horse” to enable the local healing of arterial walls.
Aims
To verify our hypothesis, we will integrate 3D bioprinting and computational biomechanics to:
- Aim 1: Create an in-vitro model of AoA recapitulating dysfunction of endothelial and vascular smooth muscle cells, degeneration of extra-cellular matrix, overall driven by inflammatory state.
- Aim 2: Create a customizable EG to carry drug in-situ.
- Aim 3: Assess in-vitro the regenerative power of the mesenchymal stem cells’ secretome to heal AoA.
Conclusion
EPEIUS will directly tackle a prominent medical issue, but we are convinced that this innovation in computer-aided engineering, additive manufacturing, and in-vitro pharmacology will create the next generation endovascular device.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.991.225 |
Totale projectbegroting | € 1.991.225 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PAVIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTsG-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease. | ERC STG | € 1.497.351 | 2022 | Details |
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions. | ERC STG | € 2.430.625 | 2023 | Details |
Personalised Bioelectronics for Epithelial RepairProBER aims to develop personalized bioelectronic wound dressings using conformal DC electrodes to enhance healing speed and efficiency in chronic wounds, preparing for clinical studies. | ERC POC | € 150.000 | 2023 | Details |
Technology Of Protein delivery in Extracellular Vesicle-induced Cardiac RepairTOP-EVICARE aims to enhance cardiac repair in heart failure by developing innovative protein loading systems in extracellular vesicles, ensuring effective delivery and commercialization. | ERC POC | € 150.000 | 2023 | Details |
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs
G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”
EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.
Personalised Bioelectronics for Epithelial Repair
ProBER aims to develop personalized bioelectronic wound dressings using conformal DC electrodes to enhance healing speed and efficiency in chronic wounds, preparing for clinical studies.
Technology Of Protein delivery in Extracellular Vesicle-induced Cardiac Repair
TOP-EVICARE aims to enhance cardiac repair in heart failure by developing innovative protein loading systems in extracellular vesicles, ensuring effective delivery and commercialization.