Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
Projectdetails
Introduction
Coronary microvascular disease (CMD) is a significant healthcare challenge, contributing to ischemic heart disease, the number one global cause of human mortality. CMD is associated with dysfunction of small coronary vessels, due to ageing, obesity, and metabolic disease, that reduces blood flow and oxygenation in the heart. Despite its widespread impact on health, our understanding is limited to animal studies, which do not recapitulate the pathophysiology in humans, nor can they be used to reveal cellular crosstalk in a controlled manner. Thus, there is a critical need to develop a humanized in vitro model to mimic CMD.
Advances in Technology
Advances in organ-on-chip and induced pluripotent stem cell (iPSC) technologies, together with our state-of-the-art 3D humanized vascular models, provide new opportunities to investigate CMD.
Project Goals
3DVasCMD builds on our expertise to develop a complex vascularized cardiac model to reveal pathological mechanisms and novel therapeutic targets of CMD. By combining cutting-edge tissue-engineering approaches we will:
- Develop and characterize a 3D vascularized cardiac model.
- Determine the impact of known risk factors on the pathophysiology of CMD.
- Develop a high-throughput system for cardiovascular drug screening.
Our model will reveal cardiac tissue-vessel crosstalk by combining autologously-differentiated iPSCs in a controlled fluidic environment. This model will enable unprecedented study of ischemia, diabetes, and sex-hormone contributions to CMD using 3D in vitro tissues. Ultimately, a high-throughput version of our model, combined with machine learning, will predict the efficacy of therapeutic targets.
Interdisciplinary Approach
Using an interdisciplinary approach, 3DVasCMD will impact our understanding of how microenvironmental and heritable risk factors contribute to CMD. This model has the potential to study multiple facets of vascular disease and can be further developed into a preclinical tool, which will be a breakthrough for cardiovascular biology and medicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.496.395 |
Totale projectbegroting | € 1.496.395 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- EUROPEAN MOLECULAR BIOLOGY LABORATORYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC ADG | € 2.500.000 | 2023 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.