Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Projectdetails
Introduction
Cardiovascular disease (CVD) is still the N1 cause of death worldwide despite the significant efforts of academia and the pharmaceutical industry to understand the different underlying causes of CVD.
Challenges in Current Models
These efforts have been hampered by the lack of proper human cardiac models.
-
Animal Models:
- Animal models have different physiology and gene expression from the human situation.
-
In Vitro Models:
- Flat cell culture in vitro models are not capable of producing pumping motion, which is the main function of the heart.
Regulatory Concerns
Furthermore, pesticide toxicity and risk for human health are controlled at a European level through a well-developed regulatory network. However, cardiotoxicity is not described as a separate hazard class, while it can have long-term cardiovascular complications.
Proposed Solution
Here we propose to make better predictive in vitro cardiac models by creating:
-
Vascularized Beating Mini-Heart:
- A mini-heart that mimics the human cardiac function.
-
Self-Propulsion Swimming Bio-Robot:
- A bio-robot made by assembling human cardiac cells into 3D tissue structures using sacrificial molding and high-resolution 3D bio-printing.
Benefits of the Project
The mini-heart and the bio-robot will enable the scientific community to have:
- A more realistic human cardiac model in vitro.
- A proper tool to assess the presence of cardiotoxicants in the environment.
Collaborative Effort
This work will be done in a consortium of four parties with the necessary expertise, including:
- Heart development
- Human pluripotent stem cells
- 3D bioprinting
- Tissue engineering
- Biosensing
Together, we aim to bring these engineered living tissues to reality.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 4.475.946 |
Totale projectbegroting | € 4.475.946 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
- NANOSCALE SYSTEMS, NANOSS GMBH
- RIVER BIOMEDICS B.V.
- UNIVERSIDAD DE MALAGA
- METATISSUE - BIOSOLUTIONS, LDA
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTsG-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease. | ERC STG | € 1.497.351 | 2022 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC STG | € 1.496.395 | 2022 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Surgical optogenetic bioprinting of engineered cardiac muscleLIGHTHEART aims to revolutionize heart failure treatment by developing a surgical bioprinting tool that uses optogenetics to create engineered cardiac muscle directly at the patient's heart. | ERC STG | € 1.499.705 | 2023 | Details |
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs
G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Surgical optogenetic bioprinting of engineered cardiac muscle
LIGHTHEART aims to revolutionize heart failure treatment by developing a surgical bioprinting tool that uses optogenetics to create engineered cardiac muscle directly at the patient's heart.