Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
Projectdetails
Introduction
Cardiovascular disease is the number one cause of death worldwide. Novel cardiovascular drugs have a high failure rate of 91% in clinical trials. This failure rate is due to a lack of proper cardiac models used to find new drugs.
Limitations of Current Models
Drug discovery studies rely mainly on 2D culture models, which have insufficient predictive value of the human heart. A new in vitro 3D model has been developed by assembling human cardiomyocytes into a three-dimensional strip configuration (3D cardiac strip) that better mimics the native heart tissue.
Innovative Solutions
However, this system is not compatible with the high-throughput setting needed to perform drug discovery screens. River BioMedics has found a unique solution to miniaturize the human 3D cardiac strips and use them in a high-throughput assay.
Technology Integration
We combine two innovative technologies:
- Human induced pluripotent stem cell (hiPSC)-cardiac cells
- Microfluidic systems
The Open-TOP microfluidic technology developed in the group of Prof. v.d. Berg from the University of Twente enables the culturing of hundreds of culture chambers automatically and consistently, which is key in high-throughput screens.
Benefits of the New Technology
This technology will enable the production and culture of 3D cardiac strips in large numbers, bringing 3D in vitro models into a high-throughput scale. The end users of this technology are pharma companies performing drug discovery activities and CROs providing drug discovery services.
Commercialization Strategy
For the commercialization of 3DCardiacHTS, we plan to partner with an end-user and assess their requirements for the use of such high-throughput technology, with the intention of securing their partnership at the end of the project.
Partnering Options
In parallel, we will discuss the various partnering options with identified potential pharma partners and/or CROs to determine the best financial deal structure for partnership on 3DCardiacHTS. Consequently, we aim to validate the best business model to pursue the commercialization of 3DCardiacHTS.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.457.500 |
Totale projectbegroting | € 1.457.500 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 30-11-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- RIVER BIOMEDICS B.V.penvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting cardiac fibrosis with next generation RNA therapeuticsFIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness. | EIC Transition | € 2.499.482 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Predictive REagent-Antibody Replacement Technology stage 2-TranslationPRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment. | EIC Transition | € 800.000 | 2022 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
Targeting cardiac fibrosis with next generation RNA therapeutics
FIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Predictive REagent-Antibody Replacement Technology stage 2-Translation
PRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment.
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC STG | € 1.496.395 | 2022 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
High-throughput combinatory drugs testing on in vitro 3D cells model platformThe project aims to develop a microfluidic platform for high-throughput screening of drug combinations in 3D cultures to enhance drug discovery and identify synergistic therapies for breast cancer. | ERC POC | € 150.000 | 2023 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
High-throughput combinatory drugs testing on in vitro 3D cells model platform
The project aims to develop a microfluidic platform for high-throughput screening of drug combinations in 3D cultures to enhance drug discovery and identify synergistic therapies for breast cancer.