Atomically layered materials for next-generation metasurfaces

METANEXT aims to enhance light-matter interactions in 2D materials by developing hBN-based metasurfaces for efficient optical access, enabling advances in quantum light sources and electronic properties.

Subsidie
€ 1.498.056
2023

Projectdetails

Introduction

Atomically layered materials composed of individual atomic planes bonded together by weak van der Waals (vdW) interactions have sparked a revolution in solid state physics due to their unique electronic properties and capability for forming multi-material heterostructures with atomically sharp interfaces.

Challenges in Optical Access

However, accessing fundamental electronic excitations of two-dimensional (2D) materials optically has so far been a major challenge due to the associated low absorption cross sections and their low environmental stability.

Project Overview

METANEXT will establish a new paradigm for amplifying and harnessing light-matter interactions in 2D materials by shaping vdW heterostructures into the resonant building blocks of optical metasurfaces.

Core Implementation

At the core of the proposed platform is the implementation of nanostructured hexagonal boron nitride (hBN) as a photonically active material, pushing beyond its currently prevalent use as a passive buffer layer in optoelectronics.

Design and Realization

Leveraging the emerging concept of optical bound states in the continuum, I will use my extensive experience in nanophotonic engineering to design and experimentally realize hBN-based metasurfaces with ultrasharp resonances incorporating mono- and few-layer systems of vdW materials. This will allow direct optical access to such 2D systems with unprecedented efficiency and spectral/spatial control over the excitation.

Specific Objectives

Specifically, I will utilize the METANEXT platform to:

  1. Push the limits of light-matter coupling in black phosphorus heterostructures.
  2. Greatly boost the efficiency of single-photon generation from localized defects in atomically thin molybdenum disulfide (MoS2).
  3. Realize a completely new concept for valley-dependent on-chip lasing from transition metal dichalcogenide (TMD) monolayers.

Expected Outcomes

METANEXT will deliver both fundamental insights into the optical excitation mechanisms of current and future 2D materials as well as important conceptual advances for practical chip-integrated quantum light sources.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.498.056
Totale projectbegroting€ 1.498.056

Tijdlijn

Startdatum1-5-2023
Einddatum30-4-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Tunable Interactions in 2-dimensional Materials for Quantum Matter and Light

This project aims to create a versatile 2D materials platform to explore and realize exotic quantum phases and non-classical light generation through interactions among optical excitations.

€ 2.597.500
ERC ADG

Design and Engineering of Optoelectronic Metamaterials

This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.

€ 2.500.000
ERC COG

Exposing Hidden Electronic Configurations in Atomically Thin Superstructures with Extreme Light

The EXCITE project aims to explore light-induced hidden phases in correlated materials using advanced nanoscale spectroscopy to enhance ultrafast technology applications.

€ 1.999.899
ERC ADG

Realizing designer quantum matter in van der Waals heterostructures

The project aims to engineer exotic quantum phases in van der Waals heterostructures using molecular-beam epitaxy, enabling novel quantum materials for advanced quantum technologies.

€ 2.498.623