Exposing Hidden Electronic Configurations in Atomically Thin Superstructures with Extreme Light
The EXCITE project aims to explore light-induced hidden phases in correlated materials using advanced nanoscale spectroscopy to enhance ultrafast technology applications.
Projectdetails
Introduction
Light-induced phase transitions in solids present a tantalizing opportunity for controlling the constituents of matter. An intense optical excitation with a duration on the order of femtoseconds can trigger nonthermal electronic and structural configurations, switching the excited material into a hidden phase that may be exploited to realize new technologies such as ultrafast memory devices.
Background
A general picture of the microscopic processes underpinning hidden phases has not been established. Their existence has therefore only been exposed in a handful of systems, presenting a major obstacle for achieving on-demand quantum materials with light.
Hypothesis
Drawing inspiration from these unique systems, I hypothesize that materials with a strongly correlated phase that is pinned by a two-dimensional superstructure provide a trajectory to a light-induced hidden phase.
Objectives
The objectives of EXCITE are:
- To establish the experimental parameter space to determine the electronic structure of hidden phases in bulk and single-layer correlated transition metal dichalcogenides.
- To demonstrate the existence of hidden phases in optically excited moiré superstructures that simulate strongly correlated behavior.
- To exploit the wide tunability of these systems in order to disentangle the general microscopic degrees of freedom that govern the trajectory into a hidden phase.
Methodology
The objectives will be accomplished by establishing a state-of-the-art experiment to optically excite in situ prepared materials and probe their electronic structure during phase transitions with nanoscale spatial resolution and femtosecond time resolution.
Innovation
These ground-breaking capabilities will be realized by integrating a high-power laser system with my new synchrotron beamline for nanoscale photoemission spectroscopy (nanoARPES) at the ASTRID2 light source, Aarhus University.
Impact
My experiments will enable me to critically assess basic assumptions in the field and move the boundaries of ultrafast science.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.899 |
Totale projectbegroting | € 1.999.899 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- AARHUS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Attosecond nanoscopy of electron dynamics instrongly correlated materialsThis project aims to develop ultrafast soft-X-ray techniques to investigate and control phase transitions in correlated transition-metal oxides for advancing oxide electronics and ReRAM memory technology. | ERC STG | € 1.997.105 | 2022 | Details |
Complex Exciton Dynamics in Materials: a First-Principles Computational ApproachThis project aims to develop a predictive theoretical approach to understand exciton dynamics in emerging materials, enhancing transport efficiency through structural modifications. | ERC STG | € 1.700.000 | 2022 | Details |
Discovering light-induced phases by first-principles material designDELIGHT aims to develop theoretical strategies to predict and discover photoinduced phases in materials, enhancing properties like magnetism and thermoelectricity through ultrafast laser interactions. | ERC ADG | € 2.117.141 | 2022 | Details |
Ultrafast topological engineering of quantum materialsThe project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques. | ERC STG | € 1.754.304 | 2023 | Details |
Attosecond nanoscopy of electron dynamics instrongly correlated materials
This project aims to develop ultrafast soft-X-ray techniques to investigate and control phase transitions in correlated transition-metal oxides for advancing oxide electronics and ReRAM memory technology.
Complex Exciton Dynamics in Materials: a First-Principles Computational Approach
This project aims to develop a predictive theoretical approach to understand exciton dynamics in emerging materials, enhancing transport efficiency through structural modifications.
Discovering light-induced phases by first-principles material design
DELIGHT aims to develop theoretical strategies to predict and discover photoinduced phases in materials, enhancing properties like magnetism and thermoelectricity through ultrafast laser interactions.
Ultrafast topological engineering of quantum materials
The project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques.