Antiferromagnetic Spin Transport With Relativistic Waves

ASTRAL aims to generate ultrashort large-amplitude spin wave pulses in antiferromagnets to unlock THz magnonics for scalable, nearly lossless computing technologies.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

While photonics has already enabled nearly lossless Tb/s transfer of data using light waves, computing at THz clock rates is the next monumental challenge. Magnonics, which employs spin waves (SWs) instead of light waves, is widely seen as one of the most appealing solutions to this problem, but so far only operates at GHz rates.

Interference and Nonlinearity

Interference of SWs enables nearly lossless protocols for logic operations. The large natural nonlinearity of SWs can be used to control their mutual interaction, propagation, and manipulation of magnetic bits - altogether facilitating the concepts of transistor and logic-in-memory devices.

Scalability of THz SWs

Since the wavelength of THz SWs is orders of magnitude shorter than that of THz photons, THz SWs offer enviable scalability down to the nanoscale.

Key Questions

  • How to push magnonics into the THz domain and enter the nonlinear regime?
  • How large are the THz nonlinearities?

Answering these questions will open up new avenues to scalable technologies for THz and nearly lossless computing.

Project ASTRAL

With ASTRAL, I want to enter the nonlinear regime of THz magnonics by generating ultrashort large amplitude SW pulses that, similar to femtosecond laser pulses in optics, can zip undisturbed over long distances unlocking the nonlinear regime of interaction between the pulses, other SWs, and even macroscopic spin textures.

Focus on Antiferromagnets

I propose to focus on antiferromagnets, where SW frequencies can easily reach the THz landmark and, similar to light waves in vacuum, follow a linear, so-called relativistic, dispersion relation. Owing to this, a broadband wavepacket of coherent SWs can be compressed to an ultrashort SW pulse - a bunch of few-cycle large-amplitude spin oscillations.

Methodology

To achieve this, ASTRAL will exploit the exclusive ability of light to initiate ultrafast spin dynamics and will attempt to interconvert femtosecond laser pulses into large-amplitude ultrashort SW pulses. Although the idea is fundamental in nature, the ambition is to set the ground for revolutionary new computing technologies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • STICHTING RADBOUD UNIVERSITEITpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Scenarios and Principles for Antiferromagnetic Recording: taming spins coherently and ultrafast

SPARTACUS aims to revolutionize data storage by achieving ultrafast, nearly non-dissipative bit writing in antiferromagnets using tailored laser pulses, minimizing energy consumption.

€ 3.500.000
ERC COG

Magnetic alloys and compounds for ultra-high harmonics spin current generation

MAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer.

€ 1.996.550
ERC COG

Manipulating magnetic domains through femtosecond pulses of magnetic field

FemtoMagnet aims to revolutionize data storage by engineering plasmonic nanodevices to generate ultrafast, reversible magnetic fields for nanoscale manipulation of magnetic domains.

€ 2.499.926
ERC ADG

Optoelectronic and all-optical hyperspin machines for large-scale computing

HYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems.

€ 2.490.000