Manipulating magnetic domains through femtosecond pulses of magnetic field
FemtoMagnet aims to revolutionize data storage by engineering plasmonic nanodevices to generate ultrafast, reversible magnetic fields for nanoscale manipulation of magnetic domains.
Projectdetails
Introduction
While the electronic industry has successfully entered the nanoworld following Moore’s law, the speed of manipulating and storing data lags behind, creating the so-called ultrafast technology gap. Processors already have a clock speed of a few gigahertz, while the storage on a magnetic hard disk requires a few nanoseconds. This bottleneck can also be found in magnetic random access memory devices.
Current Challenges
The use of ultrafast pulses of light has demonstrated effectiveness in manipulating magnetic orders on very short time scales. However, the physical processes involved are still poorly understood, and such control reaches the micrometer scale at best, effectively preventing their use for high-density data storage.
Project Overview
FemtoMagnet aims to develop an entirely new approach to manipulating magnetic domains based on the engineering of plasmonic nanodevices. For that, these devices will optically generate ultra-short, intense, and reversible pulses of magnetic field at the nanoscale, a challenge that no other technique can achieve so far.
Research Program Goals
To meet its ambitious goals, my research program engineers innovative plasmonic nanostructures inversely designed to tailor light-matter interactions at the nanoscale. Under the right illumination conditions, the electromagnetic fields generated by the nanostructure set the electrons in a metal (such as in a coil) in pseudo-continuous drift motion, in turn yielding the creation of a strong stationary magnetic field.
Expected Outcomes
By specifically creating and manipulating ultrafast, strong, confined, and reversible pulses of magnetic field in an all-optical fashion, my research program will enable the manipulation of magnetic domains at the nanoscale and over very short timescales (a few tens of femtoseconds). This will open the way to applications in ultrafast data storage and data processing.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.926 |
Totale projectbegroting | € 2.499.926 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Controlling spin angular momentum with the field of lightThe project aims to unveil direct light-spin interactions using attosecond pulses to control angular momentum in materials, enhancing understanding of magnetism and enabling ultrafast optical device design. | ERC STG | € 1.499.625 | 2022 | Details |
Scenarios and Principles for Antiferromagnetic Recording: taming spins coherently and ultrafastSPARTACUS aims to revolutionize data storage by achieving ultrafast, nearly non-dissipative bit writing in antiferromagnets using tailored laser pulses, minimizing energy consumption. | ERC ADG | € 3.500.000 | 2022 | Details |
Antiferromagnetic Spin Transport With Relativistic WavesASTRAL aims to generate ultrashort large-amplitude spin wave pulses in antiferromagnets to unlock THz magnonics for scalable, nearly lossless computing technologies. | ERC STG | € 1.500.000 | 2023 | Details |
Coherent Steering of Order via Lattice ResonancesThis project aims to explore the use of circularly-polarized optical phonons for efficient and ultrafast switching of magnetization, potentially revolutionizing data recording and processing. | ERC STG | € 1.500.000 | 2024 | Details |
Controlling spin angular momentum with the field of light
The project aims to unveil direct light-spin interactions using attosecond pulses to control angular momentum in materials, enhancing understanding of magnetism and enabling ultrafast optical device design.
Scenarios and Principles for Antiferromagnetic Recording: taming spins coherently and ultrafast
SPARTACUS aims to revolutionize data storage by achieving ultrafast, nearly non-dissipative bit writing in antiferromagnets using tailored laser pulses, minimizing energy consumption.
Antiferromagnetic Spin Transport With Relativistic Waves
ASTRAL aims to generate ultrashort large-amplitude spin wave pulses in antiferromagnets to unlock THz magnonics for scalable, nearly lossless computing technologies.
Coherent Steering of Order via Lattice Resonances
This project aims to explore the use of circularly-polarized optical phonons for efficient and ultrafast switching of magnetization, potentially revolutionizing data recording and processing.