Scenarios and Principles for Antiferromagnetic Recording: taming spins coherently and ultrafast

SPARTACUS aims to revolutionize data storage by achieving ultrafast, nearly non-dissipative bit writing in antiferromagnets using tailored laser pulses, minimizing energy consumption.

Subsidie
€ 3.500.000
2022

Projectdetails

Introduction

Thermodynamics tells us that controlling the magnetic state of media at increasingly higher rates and simultaneously consuming less energy are mutually exclusive. This fundamental dilemma has dramatic societal and environmental consequences as data centres are rapidly becoming the biggest consumers of electricity worldwide.

Project Overview

SPARTACUS proposes to resolve this fundamental dilemma and thereby to inspire conceptually new technology for ultrafast, nearly non-dissipative data storage.

Current State of Data Storage

State-of-the-art data storage and non-volatile memory are predominantly based on ferromagnets. Antiferromagnets possess much faster spin dynamics and can sustain bits writing even at THz rates. However, the lack of a net magnetization in thermodynamic equilibrium requires exceedingly strong magnetic fields to control their magnetic moments.

This fact has significantly hindered not only applications but even fundamental studies of antiferromagnetism.

Objectives of SPARTACUS

SPARTACUS aims to overcome this fundamental problem and achieve nearly non-dissipative and fastest writing of bits at write-rewrite rates surpassing the 1 THz landmark.

  1. Using spectrally and temporally tailored laser pulses to pump electronic and phononic states mediating efficient light-spin coupling.
  2. Pushing dielectric antiferromagnets strongly out-of-equilibrium.
  3. Exploring the susceptibility of spins to external stimuli in this non-equilibrium state.

Development and Innovation

SPARTACUS will develop novel ultrafast magnetometers and reveal yet unexplored non-thermodynamic routes to coherently steer spins to a desired bit state.

Coherence-mediated ultrafast mechanisms ensure reversible energy transfer to overcome the potential barrier between stable bit states, minimizing the increase of entropy and leading to vanishing heat load.

Long-term Ambition

Although SPARTACUS is fundamental in nature, its long-term ambition is to shift the paradigm from the conventional, slow, energy-consuming ferro- to ultrafast and nearly non-dissipative antiferromagnetic data storage.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 3.500.000
Totale projectbegroting€ 3.500.000

Tijdlijn

Startdatum1-11-2022
Einddatum31-10-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • STICHTING RADBOUD UNIVERSITEITpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Antiferromagnetic Spin Transport With Relativistic Waves

ASTRAL aims to generate ultrashort large-amplitude spin wave pulses in antiferromagnets to unlock THz magnonics for scalable, nearly lossless computing technologies.

€ 1.500.000
ERC STG

Spins in two-dimensional materials for tunable magnetic and optoelectronic devices

This project aims to integrate 2D materials for efficient magnetic devices and optical communication, enabling energy-efficient data storage and transport at the nanoscale.

€ 1.500.000
ERC COG

Magnetic alloys and compounds for ultra-high harmonics spin current generation

MAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer.

€ 1.996.550
ERC COG

Super-resolution magnetic correlation microscope

Develop a far-field super-resolution magnetic correlation microscopy platform to enhance understanding of 2D magnetic materials and advance spintronic device architectures.

€ 2.565.578