Waveguide-based Cochlear Implant for Optogenetic Stimulation

The project aims to develop a miniaturized optical waveguide module for cochlear implants to restore hearing in deaf patients using optogenetics and safe light stimulation techniques.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

The optical cochlear implant (oCI) aims to restore near natural hearing in profoundly hearing impaired and deaf patients. Sound perception will be restored through an implantable medical device in combination with a gene therapy medicinal product. Thereby, the auditory nerve is stimulated directly through focused light, replacing the dysfunctional or absent hair cells. This is achieved through a combination of micro-scale light emitter technology and precise neural control through the expression of light-gated ion channels in the auditory nerve (called optogenetics).

Project Proposal

Here, we propose to prove the feasibility of optical waveguide modules for future optical cochlear implants. Building on fabricating micro-scaled waveguide arrays and multi-beam laser diode emitters, we plan to couple them via micro-lens arrays in a compact multi-channel optical module for testing the feasibility of miniaturization and integration of the optical components. Preclinical validation shall be performed in rodents.

Features of the Proposed Module

The proposed waveguide-based optical module combines several aspects, which makes it a candidate for later clinical application:

  1. The optical emitters can be safely integrated into the hermetically sealed titanium package housing the internal oCI electronics.
  2. There is no need to directly insert the emitters in the cochlear turns, which mitigates the risk of heat impact on the patient during optical stimulation.
  3. Emerging red light activated opsins can be addressed by readily available red laser diode technology.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-3-2023
Einddatum31-8-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTSpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway

Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.

€ 1.499.213
ERC Proof of...

Method for Integrated All-Optical Biological Analysis at Scale

Developing an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer.

€ 150.000
ERC Synergy ...

A sonogenetic brain-machine interface for neurosciences and visual restoration

Developing a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders.

€ 7.817.939
ERC Advanced...

Non-invasive patterned electrical neurostimulation of the retina

This project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases.

€ 2.500.000
ERC Proof of...

III-V seMiconductor on sILicon nano opticaL amplIfier for signal regenerAtion and coMPuting

MILLIAMP aims to develop compact, low-power semiconductor optical amplifiers for on-chip communications and neuromorphic computing, while establishing a startup and strengthening intellectual property.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Transition

Near natural hearing restoration through waveguide-based optical cochlear implants

OptoWavePro aims to create a safe and effective optical cochlear implant for restoring hearing in profoundly impaired individuals using advanced optogenetic techniques and innovative engineering.

€ 2.499.983
EIC Transition

Precision Hearing Diagnostics and Augmented-hearing Technologies

The project aims to develop a portable diagnostic device for cochlear synaptopathy and augmented-hearing technologies, transitioning innovative research into practical clinical applications.

€ 2.499.416
EIC Pathfinder

MULTIMODE NONLINEAR FIBER BASED ENDOSCOPIC IMAGING AND TREATMENT

MULTISCOPE aims to revolutionize optical diagnostics and therapy by developing a dual-function endoscopic device for real-time optical biopsy and cold atmospheric plasma treatment in gastrointestinal care.

€ 2.863.733
EIC Transition

Multi-lane, high-power Photonic Integrated Circuit-based Erbium-Doped Amplifier

The project aims to commercialize ultra-low loss Erbium doped fiber amplifiers using ion implanted silicon nitride waveguides, enhancing optical communications and securing strategic investments for a startup.

€ 1.584.066
EIC Pathfinder

LUMINESCENT IMPLANTS AS PORTS FOR LIGHT-BASED THERAPIES

The project aims to develop PhotoTheraPorts for localized light delivery to enhance anti-inflammatory and neuroinhibitory drug efficacy, improving treatment precision for neuropathic pain and epilepsy.

€ 2.999.840