SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

III-V seMiconductor on sILicon nano opticaL amplIfier for signal regenerAtion and coMPuting

MILLIAMP aims to develop compact, low-power semiconductor optical amplifiers for on-chip communications and neuromorphic computing, while establishing a startup and strengthening intellectual property.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Decreasing both power consumption and footprint of optoelectronic devices has been a long-term goal for nanophotonics. MILLIAMP aims at the demonstration of the proof of concept of a novel type of integrated semiconductor optical amplifiers presenting performance in terms of compactness, power consumption, and nonlinearity, fulfilling the needs for on-chip communications and all-optical neural networks. Our invention stems directly from the work achieved on nanolaser diodes integrated on Si photonic circuits during the ERC consolidator project HYPNOTIC.

Technical Activities

During the project, technical activities will be focused on the development of the device for two user cases:

  1. Optical regeneration of high bit rate signals
  2. Demonstration of a sigmoid activation function for neuromorphic computing

Portfolio Development

The device will complete the portfolio of optoelectronic nanocomponents developed in the PI's team. We aim at exploiting this technology by creating a spin-off company which will offer solutions for systems in package communications.

Objectives

MILLIAMP has the following objectives:

  • Achieve a market study
  • Determine a business model for the future startup
  • Strengthen the intellectual property
  • Establish partnerships with microelectronics companies

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-7-2023
Einddatum31-12-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices

SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.

ERC Advanced...€ 2.496.206
2024
Details

Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing

ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.

ERC Synergy ...€ 13.999.999
2025
Details

Three dimensional INtegrated PhotonIcS to RevolutionizE deep Learning

This project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications.

ERC Consolid...€ 1.998.918
2022
Details

LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering

LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.

ERC Proof of...€ 150.000
2022
Details

Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor

The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.

ERC Starting...€ 1.499.325
2023
Details
ERC Advanced...

Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices

SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.

ERC Advanced Grant
€ 2.496.206
2024
Details
ERC Synergy ...

Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing

ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.

ERC Synergy Grant
€ 13.999.999
2025
Details
ERC Consolid...

Three dimensional INtegrated PhotonIcS to RevolutionizE deep Learning

This project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications.

ERC Consolidator Grant
€ 1.998.918
2022
Details
ERC Proof of...

LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering

LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.

ERC Proof of Concept
€ 150.000
2022
Details
ERC Starting...

Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor

The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.

ERC Starting Grant
€ 1.499.325
2023
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Nano electro-optomechanical programmable integrated circuits

NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.

EIC Pathfinder€ 2.999.924
2023
Details

Multi-lane, high-power Photonic Integrated Circuit-based Erbium-Doped Amplifier

The project aims to commercialize ultra-low loss Erbium doped fiber amplifiers using ion implanted silicon nitride waveguides, enhancing optical communications and securing strategic investments for a startup.

EIC Transition€ 1.584.066
2023
Details

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition€ 2.489.571
2022
Details

Insect-Brain inspired Neuromorphic Nanophotonics

Developing nanophotonic chips inspired by insect brains for energy-efficient autonomous navigation and neuromorphic computing, integrating sensing and processing capabilities.

EIC Pathfinder€ 3.229.534
2022
Details

Neuromorphic computing Enabled by Heavily doped semiconductor Optics

NEHO aims to create a novel photonic integrated circuit for ultrafast, low-energy neuromorphic processing using nonlinear photon-plasmon technology to enhance machine learning capabilities.

EIC Pathfinder€ 2.982.184
2023
Details
EIC Pathfinder

Nano electro-optomechanical programmable integrated circuits

NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.

EIC Pathfinder
€ 2.999.924
2023
Details
EIC Transition

Multi-lane, high-power Photonic Integrated Circuit-based Erbium-Doped Amplifier

The project aims to commercialize ultra-low loss Erbium doped fiber amplifiers using ion implanted silicon nitride waveguides, enhancing optical communications and securing strategic investments for a startup.

EIC Transition
€ 1.584.066
2023
Details
EIC Transition

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

EIC Transition
€ 2.489.571
2022
Details
EIC Pathfinder

Insect-Brain inspired Neuromorphic Nanophotonics

Developing nanophotonic chips inspired by insect brains for energy-efficient autonomous navigation and neuromorphic computing, integrating sensing and processing capabilities.

EIC Pathfinder
€ 3.229.534
2022
Details
EIC Pathfinder

Neuromorphic computing Enabled by Heavily doped semiconductor Optics

NEHO aims to create a novel photonic integrated circuit for ultrafast, low-energy neuromorphic processing using nonlinear photon-plasmon technology to enhance machine learning capabilities.

EIC Pathfinder
€ 2.982.184
2023
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.