Tree-based Ridge Extractor for image analysis
This project aims to transfer an innovative galaxy filament detection algorithm to enhance biomedical image analysis for improved disease diagnosis and applications in various fields.
Projectdetails
Introduction
Accurate and reliable analyses of medical images have become a key step to determine the presence or severity of diseases, directly impacting the clinical care for patients.
Importance of Biomedical Image Analysis
Among the numerous and various biomedical image analyses, the identification of blood vessels and the associated vascular trees is one of the most central topics for diagnosis of the coronary, lungs, liver, or retina, which require detection methods to assist physicians.
Limitations of Current Methods
Many such methods show intrinsic limitations due to:
- The required pre-processing of the images
- The approach used, e.g., limited training databases, etc.
Complex Patterns in Nature
Complex filamentary patterns, such as the vascular trees, are common and widely observed in various fields including geology and astrophysics. In astrophysics, elongated structures made of the alignment of galaxies, called filaments of the cosmic web (CW), reveal the nature of matter in the Universe and the way it assembles over the ~14 billion years’ history of the cosmos.
Relevance to Astrophysics
For these reasons, detecting CW filaments and studying them is an increasingly important topic in astrophysics and is one of the aims of the ERC-Advanced project ByoPiC (Baryon Picture of the Cosmos).
Project Overview
This proposal is a direct offspring of ByoPiC. It is the first step of a multi-step technology transfer strategy which aims at transferring an innovative algorithm to detect filaments in the distribution of galaxies to the analysis of biomedical images. This lays the ground for applications in scores of other domains, including:
- Satellite imagery
- Geophysical tomographic data
- Engineering
- And more.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Extraction, Modelling and Analysis of the Brain Vessel TreeCARAVEL aims to create the first comprehensive population atlas of brain vascular ageing through innovative image analysis methods, enhancing understanding of neurovascular health and disease. | ERC Consolid... | € 1.978.935 | 2025 | Details |
Advanced analysis of multiparametric volumetric ultrafast ultrasound: a novel approach for non-invasive breast cancer diagnosisThis project aims to enhance non-invasive breast cancer diagnosis by integrating machine learning with advanced ultrasound techniques to create predictive models for tumor characteristics, reducing reliance on biopsies. | ERC Starting... | € 1.499.498 | 2025 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC Starting... | € 1.852.430 | 2023 | Details |
Particle distribution dynamics in nonlinear bifurcating networksThis project aims to understand nonuniform red blood cell distributions in bifurcating networks using droplet microfluidics and in vivo observations to advance knowledge in vascularization and organ development. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
Extraction, Modelling and Analysis of the Brain Vessel Tree
CARAVEL aims to create the first comprehensive population atlas of brain vascular ageing through innovative image analysis methods, enhancing understanding of neurovascular health and disease.
Advanced analysis of multiparametric volumetric ultrafast ultrasound: a novel approach for non-invasive breast cancer diagnosis
This project aims to enhance non-invasive breast cancer diagnosis by integrating machine learning with advanced ultrasound techniques to create predictive models for tumor characteristics, reducing reliance on biopsies.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Particle distribution dynamics in nonlinear bifurcating networks
This project aims to understand nonuniform red blood cell distributions in bifurcating networks using droplet microfluidics and in vivo observations to advance knowledge in vascularization and organ development.
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.
Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Digitale biopsie van herseninfarctDit project ontwikkelt StrokeBiopt, een technologie die 3D visualisaties van bloedproppen uit 2D scans genereert om artsen te ondersteunen bij behandelkeuzes en de patiëntgezondheid te verbeteren. | Mkb-innovati... | € 20.000 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorerVOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping. | EIC Pathfinder | € 2.999.999 | 2025 | Details |
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentieDit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren. | Mkb-innovati... | € 200.000 | 2018 | Details |
Haalbaarheidsproject Beter beeld voor een betere diagnoseHet project onderzoekt de toepassing van geavanceerde beeldverwerking in medische technieken om diagnoses te verbeteren en stralingsblootstelling voor patiënten te verminderen. | Mkb-innovati... | € 14.400 | 2021 | Details |
Digitale biopsie van herseninfarct
Dit project ontwikkelt StrokeBiopt, een technologie die 3D visualisaties van bloedproppen uit 2D scans genereert om artsen te ondersteunen bij behandelkeuzes en de patiëntgezondheid te verbeteren.
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorer
VOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping.
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentie
Dit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren.
Haalbaarheidsproject Beter beeld voor een betere diagnose
Het project onderzoekt de toepassing van geavanceerde beeldverwerking in medische technieken om diagnoses te verbeteren en stralingsblootstelling voor patiënten te verminderen.