Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.
Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment.
Projectdetails
Introduction
Our healthcare system is under unsustainable strain owing, largely, to cardiovascular diseases and cancer. For both, imaging vasculature and flow precisely is paramount to reduce costs while improving diagnosis and treatment. Specifically, the focus is on the multiscale aspects of shear, vorticity, pressure, and capillary bed (10-200 μm vessels) structure and mechanics.
Imaging Requirements
However, this requires an imaging depth of ~10 cm with a resolution of ~50 μm. Furthermore, velocities often exceed 1 m/s, which requires a frame rate of ~1000 fps. Clinical imaging modalities have so far been hindered by insufficient spatiotemporal resolution, and there is thus a dire need for new techniques.
Proposed Solution
Plane-wave ultrasound enhanced with contrast microbubbles outperforms all modalities in safety, cost, and speed, and is thus the ideal candidate to address this need. The strategy I propose in Super-FALCON harnesses the nonlinear dynamics of monodisperse microbubbles.
Work Packages
- WP1: I will use deep learning and GPU-accelerated acoustic simulations to recover super-resolved (1/20th of the wavelength) bubble clouds.
- WP2: I will create a new model for confined bubbles and use them as nonlinear sensors for capillary imaging.
- WP3: I will disentangle attenuation and scattering using (physics-informed) deep learning and correct for wave distortion. This is needed to apply the strategies from WP1 and WP2 in deep tissue.
- WP4: I will use automatic segmentation to integrate the fundamental results of WP1, WP2, and WP3 into a technology that I will scientifically assess on vascularized ex vivo livers.
Ambition and Impact
With Super-FALCON, my ambition is to generate a long-term impact both scientifically and societally. I will produce new fundamental knowledge about confined bubble dynamics, inhomogeneous ultrasound propagation, and deconvolution strategies, as well as new experimental methods for flow imaging and characterization.
In healthcare, Super-FALCON could initiate a paradigm shift towards patient-specific treatment.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Monitoring of stroke patients with 3D ultrasound localization microscopyThe ERC POC StrokeMonitor project aims to validate a portable super-resolution ultrasound device for monitoring delayed cerebral ischemia in stroke patients, enhancing neuroimaging accessibility and accuracy. | ERC POC | € 150.000 | 2023 | Details |
Cloud-native ultrasound imagingCloudSound aims to revolutionize ultrasound imaging by leveraging cloud computing for high-quality, affordable, and accessible medical imaging through a closed-loop, goal-directed approach. | ERC POC | € 150.000 | 2024 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Monitoring of stroke patients with 3D ultrasound localization microscopy
The ERC POC StrokeMonitor project aims to validate a portable super-resolution ultrasound device for monitoring delayed cerebral ischemia in stroke patients, enhancing neuroimaging accessibility and accuracy.
Cloud-native ultrasound imaging
CloudSound aims to revolutionize ultrasound imaging by leveraging cloud computing for high-quality, affordable, and accessible medical imaging through a closed-loop, goal-directed approach.