Skill Performance Estimation from cARdiac Signals

The project aims to develop personalized training solutions by adapting machine learning algorithms to estimate cognitive and physical states from cardiac signals using consumer-grade sensors for enhanced athletic performance.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

In any learning situation, be it math education, language learning, or sport training, different learners have different abilities, motivations, and capacities at any given time. Thus, an optimal learning experience can only be achieved with personalized training solutions, dynamically adapted to each learner’s cognitive and/or physical states.

Background

The scientific literature shows that such states could be estimated from Cardiac Signals (CS). In ERC PoC SPEARS, we propose to redefine consumer training apps by enabling them to suggest personalized and adaptive training plans according to an estimation of their users’ cognitive and/or physical states from their CS measured with consumer-grade sensors, e.g., smartwatches.

Previous Work

The outcome of the ERC project BrainConquest should enable us to tackle this challenge. In BrainConquest, we explored a personalized training approach for users of Brain-Computer Interfaces (BCI). In doing so, we developed Machine Learning (ML) and Signal Processing (SP) algorithms to estimate users’ mental states and predict their upcoming performances from their brain and physiological signals, including CS.

Objectives

In SPEARS, we aim to:

  1. Adapt and improve BrainConquest ML & SP algorithms, initially designed for BCI performance prediction from research-grade brain and CS sensors in the lab.
  2. Predict cognitive and physical performance from consumer-grade CS sensors in the wild.
  3. Explore a commercial application of this technology for sport training, particularly in collaboration with the startup Flit Sport.

Collaboration with Flit Sport

Flit Sport sells an app for providing personalized training exercises for endurance sport athletes, based on their past performances and ML. By integrating our CS-based prediction into the Flit Sport training app, we aim to design optimally personalized training solutions for millions of runners worldwide.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2024
Einddatum30-6-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUEpenvoerder
  • Flit Sport SAS

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Unique non-invasive pace-mapping system to identify subjects at risk of arrhythmic sudden death

Develop a non-invasive mapping and pacing system to detect cardiac signals for predicting sudden cardiac death, improving early diagnosis and management of heart disease.

€ 2.488.400
ERC Starting...

Enabling Unobtrusive Real-World Monitoring of Brain-Networks with Wearable Neurotechnology and Multimodal Machine Learning

The INTEGRAL project aims to develop a hybrid wearable platform combining HD-DOT and EEG for continuous brain network imaging in everyday environments, enhancing neurotechnology research and applications.

€ 1.654.850
ERC Proof of...

Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devices

This project aims to develop a neuromorphic computing system using 2D semiconductor-based charge trap memory for efficient, low-power detection and classification of electrophysiological signals.

€ 150.000
ERC Starting...

Using CARDIac simulations to run in-silicO clinical TRIALS

This project aims to develop a GPU-accelerated computational platform for simulating cardiac pathologies and device responses, integrating uncertainty quantification to enhance in-silico clinical trials.

€ 1.499.423
ERC Proof of...

SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivo

SMARTSENS aims to revolutionize neuro-rehabilitation by providing a wearable, non-invasive system for continuous monitoring of neuromuscular parameters during daily activities.

€ 150.000

Vergelijkbare projecten uit andere regelingen

1.1 - Het ve...

CAP.AI

CAP.AI ontwikkelt een platform dat hartritmes analyseert met AI en machine learning om hartaandoeningen vroegtijdig op te sporen.

€ 498.266
Mkb-innovati...

Cardio Sensing & Coaching

Het project ontwikkelt een gebruiksvriendelijke webportal en sensor voor thuiscardiorevalidatie, waarmee patiënten realtime gezondheidsdata kunnen monitoren en feedback ontvangen, om zorgkosten te verlagen.

€ 200.000
Mkb-innovati...

SEIZE.SENSE

Het project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid.

€ 117.810
EIC Transition

Precision Hearing Diagnostics and Augmented-hearing Technologies

The project aims to develop a portable diagnostic device for cochlear synaptopathy and augmented-hearing technologies, transitioning innovative research into practical clinical applications.

€ 2.499.416
Mkb-innovati...

AlphaBeats

AlphaBeats ontwikkelt een digitale meditatie-oplossing met biofeedback om stress te verminderen via persoonlijke muziek en real-time data-analyse.

€ 20.000