Enabling Unobtrusive Real-World Monitoring of Brain-Networks with Wearable Neurotechnology and Multimodal Machine Learning
The INTEGRAL project aims to develop a hybrid wearable platform combining HD-DOT and EEG for continuous brain network imaging in everyday environments, enhancing neurotechnology research and applications.
Projectdetails
Introduction
Measuring and linking brain network activity to human physiology and behavior in natural everyday situations promises profound new insights into healthy brain function and disorders. However, the absence of suitable mobile neurotechnology presents a significant roadblock.
Current Limitations
Functional magnetic resonance imaging (fMRI) has greatly advanced our understanding of brain function and networks, but it is limited to single-snapshot experiments in constrained lab settings. Electroencephalography (EEG), while mobile, cannot directly be linked to brain networks captured by fMRI.
Proposed Solution
To overcome these roadblocks and to advance neuro-inspired treatments and discoveries to natural environments, a hybrid wearable platform is required that combines innovations in hardware and analysis methods to enable continuous and stable measurements of brain network activity maps in the everyday world. Advancing high-density diffuse optical tomography (HD-DOT) can provide such a suitable alternative to fMRI.
Project Objectives
With a unique systems engineering concept, INTEGRAL aims to miniaturize and integrate DOT, EEG, and physiological sensors with advanced multimodal machine learning to improve spatio-temporal contrast in mobile brain imaging. The project is structured around the following objectives:
- Objective 1 (Instruments): Develop hardware for unobtrusive and continuous wearable brain-body imaging with HD-DOT-EEG.
- Objective 2 (Experiments): Collect extensive multimodal data for measuring brain networks while controlling for environmental and physiological artifacts.
- Objective 3 (Analysis): Enable estimation of brain network activity with multimodal sensor fusion and machine learning.
- Objective 4 (Integration): Provide validation of robust brain-networks imaging in ecologically valid everyday world environments.
Expected Impact
If successful, this new platform will provide unprecedented opportunities to study brain function with global impact on neurotechnology applications and research from Neuroscience of the Everyday World to digital health.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.654.850 |
Totale projectbegroting | € 1.654.850 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAT BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Minimally invasive endoscopes for neuronal activity monImaging-assisted single-cell specific activity monitoring and optogenetic stimulation of deep brain structures in motile and awaken animal modelsWOKEGATE aims to enhance minimally invasive endoscopes for real-time monitoring of neuronal activity in awake animals, facilitating advanced neuroscience research and commercial applications. | ERC POC | € 150.000 | 2022 | Details |
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental HealthThis project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders. | ERC COG | € 1.999.875 | 2025 | Details |
AEGEUS - A Novel EEG Ultrasound Device for Functional Brain Imaging and NeurostimulationDevelop a novel wearable device combining ultrasound imaging and EEG for enhanced diagnosis and treatment of neurological disorders, aiming for improved patient outcomes and research advancements. | EIC Pathfinder | € 2.998.988 | 2023 | Details |
Multifunctional nano-bio INterfaces wIth deep braiN reGionsMINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution. | ERC COG | € 2.992.875 | 2025 | Details |
Minimally invasive endoscopes for neuronal activity monImaging-assisted single-cell specific activity monitoring and optogenetic stimulation of deep brain structures in motile and awaken animal models
WOKEGATE aims to enhance minimally invasive endoscopes for real-time monitoring of neuronal activity in awake animals, facilitating advanced neuroscience research and commercial applications.
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
AEGEUS - A Novel EEG Ultrasound Device for Functional Brain Imaging and Neurostimulation
Develop a novel wearable device combining ultrasound imaging and EEG for enhanced diagnosis and treatment of neurological disorders, aiming for improved patient outcomes and research advancements.
Multifunctional nano-bio INterfaces wIth deep braiN reGions
MINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution.