Polymer pRobes fOr a VISual prOsthesis
PROVISO aims to develop flexible polymer electrodes for chronic implantation in the visual cortex to restore rudimentary vision in blind individuals by inducing artificial light perception.
Projectdetails
Introduction
Approximately forty million people across the world are blind, a condition with serious consequences for a person’s autonomy. Restoration of visual function in blind individuals is an important scientific goal with large societal benefits. In a large fraction of blind patients, the connection between the eye and the brain has degenerated so that restoration of a rudimentary form of vision can only be achieved in pathways downstream from the retina, like the visual cortex. PROVISO tests the feasibility of a new approach for a cortical visual prosthesis by implanting flexible polymer electrodes into the visual cortex that can be stimulated electrically to create a rudimentary form of vision.
Phosphenes and Visual Perception
Weak electrical currents applied to an electrode in the visual cortex induce an artificial percept of light, called “phosphene.” Multiple phosphenes can be used to build up a shape, just as the lights of a matrix board along the highway generate letters. A promising approach to restore vision involves inserting tiny electrodes into the visual cortex, close to the neurons, so that weak currents result in phosphene perception.
Challenges to Overcome
There are two problems that need to be solved before the prosthesis can become a treatment for blind individuals:
- The first problem is that the electrodes available for chronic implantation are made of silicon or metal, which causes a tissue response (gliosis) that degrades the interface with the tissue after several months.
- The second problem is coverage of the visual field. In humans, much of the primary visual cortex (V1) is not located on the surface of the brain, but inside a sulcus, making it difficult to access.
Proposed Solutions
PROVISO will develop methods to implant flexible electrodes that cause little tissue damage and remain functional across longer time scales into the brain. These electrodes will be implanted deep into several brain areas, thereby providing good coverage of the visual field.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 31-12-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory DisordersThis project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit. | ERC STG | € 1.499.625 | 2022 | Details |
Retinal Mesh OptoelectronicsThe project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration. | ERC COG | € 2.000.000 | 2022 | Details |
Non-invasive patterned electrical neurostimulation of the retinaThis project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases. | ERC ADG | € 2.500.000 | 2023 | Details |
High-dimensional electrical stimulation for visual prosthesisThe project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients. | EIC Pathfinder | € 2.105.228 | 2022 | Details |
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory Disorders
This project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit.
Retinal Mesh Optoelectronics
The project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration.
Non-invasive patterned electrical neurostimulation of the retina
This project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases.
High-dimensional electrical stimulation for visual prosthesis
The project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients.