High-dimensional electrical stimulation for visual prosthesis
The project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients.
Projectdetails
Introduction
Future advanced neuroprostheses will need to transfer orders of magnitude more information to the brain than currently possible. This is most urgently needed in visual prostheses. Improving the electrode count will be part of the solution: a next generation of visual prosthesis will most probably be based on the insertion of over 1000 microelectrodes in the visual cortex.
Current Limitations
Still, current visual prostheses use very simple stimulation patterns, in which at most the stimulation amplitude is modulated. We propose to explore a second, complementary approach to brute scaling: using the available electrodes more efficiently by applying sophisticated stimulation protocols.
Objectives
Our main objective is to achieve a fundamental breakthrough in the spatial resolution of electrical brain stimulation to restore vision, obtaining a resolution of at least 20X the number of electrodes that are physically present.
Research Methodology
The vast number of possible stimulation combinations calls for a radically new research methodology, integrating modeling and state-of-the-art neuroscience methods at every spatial scale (from single neurons to the entire brain) in a closed-loop optimization process.
- With this combination of techniques, we will study which stimulation patterns effectively induce sufficient neural activations in higher areas (i.e. ignition) and cause visual perceptions.
- Thus, we will be able to explore the vast, hyperdimensional search space of possible stimulation patterns.
- We aim to produce a set of in vivo tested stimulation patterns that are capable of eliciting distinguishable physiological and behavioral responses.
Expected Outcomes
The obtained order-of-magnitude improvement in resolution will spur the development of breakthrough prostheses that will be widely adopted by blind patients, and bring the field of neural interfacing to the next level.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.105.228 |
Totale projectbegroting | € 2.105.228 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2026 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
- UNIVERSIDAD POMPEU FABRA
- REVISION IMPLANT
- HUN-REN TERMESZETTUDOMANYI KUTATOKOZPONT
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory DisordersThis project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit. | ERC STG | € 1.499.625 | 2022 | Details |
Non-invasive patterned electrical neurostimulation of the retinaThis project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases. | ERC ADG | € 2.500.000 | 2023 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC STG | € 1.499.213 | 2023 | Details |
Injectable nanoelectrodes for wireless and minimally invasive neural stimulationDeveloping minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments. | ERC STG | € 1.499.725 | 2023 | Details |
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory Disorders
This project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit.
Non-invasive patterned electrical neurostimulation of the retina
This project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Injectable nanoelectrodes for wireless and minimally invasive neural stimulation
Developing minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments.