Hydrogel Coatings for Improving the Efficiency of Implanted Electrode Arrays
The COATARRAY project aims to enhance the performance of neuroprosthetic electrode arrays through a bioinspired conductive hydrogel coating, improving clinical outcomes and enabling new treatments.
Projectdetails
Introduction
Implanted electrode arrays are a key component of neuroprosthetic systems designed to restore functions lost through injury or degeneration of the nervous system.
Current Materials
Electrode arrays currently used in clinical practice are made from metals (e.g., Platinum, PtIr alloys) encapsulated in silicone. These materials strike a compromise between electrical properties on one side and good tissue integration on the other.
Challenges with Current Electrode Arrays
For example, the limited charge injection capacity and high mechanical stiffness of metal electrodes are implicated in challenges with:
- Long-term stability
- Mechanical failure
- Formation of a glial scar
- Electrode miniaturization
COATARRAY Project Overview
In the COATARRAY project, we will develop a specialized coating designed to radically improve the electrical and mechanical performance of electrode arrays. The coating is based on a bioinspired hydrogel material further endowed with electrical conductivity via incorporation of conductive polymers.
Coating Application
The coating can be assembled on a variety of ready-made electrode arrays designed for different applications.
Testing and Analysis
In this project, we will conduct a thorough electrical characterization of the coating as well as:
- Mechanical tests
- Insertion tests
- Sterilization tests
- Cytocompatibility tests
- Accelerated aging tests
In combination with analysis of the regulatory and commercial landscape, this project will establish an essential milestone towards clinical translation of the COATARRAY technology.
Potential Impact
If successful, our approach to improving the performance of implanted electrode arrays can lead to better clinical outcomes for established neuroprosthetic systems (cochlear implants, deep brain, and spinal cord stimulation) but also to the development of promising new treatments.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 31-10-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET DRESDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hydrogel Machines for Seamless Living System InterfacesGELECTRO aims to develop electrically conductive hydrogels for bioelectronic interfaces that mimic biological systems, enhancing tissue repair and organoid development through advanced sensing and actuation. | ERC Consolid... | € 1.999.473 | 2024 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Personalised Bioelectronics for Epithelial RepairProBER aims to develop personalized bioelectronic wound dressings using conformal DC electrodes to enhance healing speed and efficiency in chronic wounds, preparing for clinical studies. | ERC Proof of... | € 150.000 | 2023 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC Starting... | € 1.499.213 | 2023 | Details |
Injectable nanoelectrodes for wireless and minimally invasive neural stimulationDeveloping minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments. | ERC Starting... | € 1.499.725 | 2023 | Details |
Hydrogel Machines for Seamless Living System Interfaces
GELECTRO aims to develop electrically conductive hydrogels for bioelectronic interfaces that mimic biological systems, enhancing tissue repair and organoid development through advanced sensing and actuation.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Personalised Bioelectronics for Epithelial Repair
ProBER aims to develop personalized bioelectronic wound dressings using conformal DC electrodes to enhance healing speed and efficiency in chronic wounds, preparing for clinical studies.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Injectable nanoelectrodes for wireless and minimally invasive neural stimulation
Developing minimally invasive, nanoscale, wireless neuroelectrodes for targeted neural stimulation to improve treatment accessibility for neurological impairments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
BioFunctional IntraNeural ElectrodesBioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology. | EIC Pathfinder | € 1.945.622 | 2023 | Details |
New generation of bioactive coating for intravenous catheters and implantable medical devices to prevent infections and thrombosisDeveloping a novel coating technology using layer-by-layer cross-linked nanogels to prevent thrombosis and bloodstream infections in implantable medical devices, aiming for market readiness. | EIC Transition | € 2.476.343 | 2024 | Details |
Engineering Graphene for developing Neural Interfaces to revolutionize how we treat neurological diseasesINBRAIN Neuroelectronics is developing AI-powered graphene-based neural implants to enhance resolution and specificity in neuroelectronic therapies for refractory neurological disorders. | EIC Accelerator | € 2.493.750 | 2023 | Details |
DRUG-ELUTING ELECTRICAL IMPLANT TO REPAIR THE SPINAL CORDDREIMS aims to advance a novel drug-eluting electrical implant for spinal cord repair by refining its design and meeting regulatory standards for human therapeutic use. | EIC Transition | € 2.494.542 | 2023 | Details |
SyCap MechanoAvalanche Medical ontwikkelt een duurzaam kunststof implantaat voor kraakbeendefecten in de knie, gericht op middelbare leeftijd patiënten. | Mkb-innovati... | € 20.000 | 2022 | Details |
BioFunctional IntraNeural Electrodes
BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.
New generation of bioactive coating for intravenous catheters and implantable medical devices to prevent infections and thrombosis
Developing a novel coating technology using layer-by-layer cross-linked nanogels to prevent thrombosis and bloodstream infections in implantable medical devices, aiming for market readiness.
Engineering Graphene for developing Neural Interfaces to revolutionize how we treat neurological diseases
INBRAIN Neuroelectronics is developing AI-powered graphene-based neural implants to enhance resolution and specificity in neuroelectronic therapies for refractory neurological disorders.
DRUG-ELUTING ELECTRICAL IMPLANT TO REPAIR THE SPINAL CORD
DREIMS aims to advance a novel drug-eluting electrical implant for spinal cord repair by refining its design and meeting regulatory standards for human therapeutic use.
SyCap Mechano
Avalanche Medical ontwikkelt een duurzaam kunststof implantaat voor kraakbeendefecten in de knie, gericht op middelbare leeftijd patiënten.